

U.S. WEATHER RESEARCH PROGRAM  
**STORM-FEST**

Operations Summary and Data Inventory

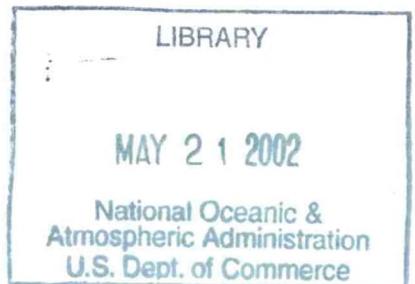
U.S. Weather Research Program Office  
UCAR Office of Field Project Support

QC  
880.4  
.F7  
C86  
1993

QC  
880.4  
F7  
CP6  
1993

# ***STORM***

## ***Fronts Experiment Systems Test***


### ***STORM-FEST***

#### ***Operations Summary and Data Inventory***

*prepared by:*

***John B. Cunning***  
***National Oceanic and Atmospheric Administration***  
***U.S. Weather Research Program***

***Steven F. Williams***  
***University Corporation for Atmospheric Research***  
***Office of Field Project Support***



***U.S. Weather Research Program Office***  
***National Oceanic and Atmospheric Administration***  
***325 Broadway***  
***Boulder, CO 80303***  
***(303) 497-8900***

***August 1993***

## Preface and Acknowledgements

The U.S. Weather Research Program, formerly called the STORM Program, conducted the first field experiment as part of USWRP, from 1 February through 15 March 1992. The experiment, called the STORM-FEST (Fronts Experiment Systems Test), focussed on studying the structure and dynamics of wintertime fronts and associated precipitation over the central United States, as well as being a research systems tests of the various new observational systems and operational procedures envisioned being used in future experiments. In conjunction with the field experiment there were special activities at Experimental Forecast Facilities at Kansas City, Missouri (at the National Severe Storms Forecast Center), Norman, Oklahoma (a joint activity supported by the Norman WSFO, NWS southern region, NSSL and the OSF) and at Boulder/Denver (a joint activity between FSL and Denver WSFO). Special numerical modeling activities were conducted at NMC with the Eta Ada model and at NCAR with the MM-4 model running every day in a semi-operational mode. Four Dimensional Data Assimilation (4DDA) data sets were generated using both the FSL MAPS and LAPS systems (the LAPS model domain was expanded to cover the entire STORM-FEST domain with analyses made every hour). High frequency data were collected from the ASOS/AWOS systems, as well as Archive II data from the WSR-88D radars that were within the experimental domain.

The USWRP data management system has evolved to the point where researchers can now have easy access to both operational and research data sets. The system provides researchers access to a distributed meteorological database held at geographically dispersed data centers. The system provides the means to identify data sets, the facilities to view the metadata associated with the data set, and the ability to automatically obtain data either via Internet or removable media.

An experiment of this type would not be possible without the help and dedication of so many people. It is virtually impossible to name every group or individual who helped make this experiment possible and/or who worked to make the data available. A special thanks to Dr. Donald Johnson and the members of the Cyclonic Storm and Fronts Working Group proposed and

carried out the preliminary planning for the experiment. Thanks to Dr. Peter Hobbs and members of the Field Phase Steering Committee who developed the scientific objectives and the observational requirements for the experiment. Thanks to Dr. Stephen Koch and members of the Systems Integration Committee that developed the assessment plans for the systems test component of the experiment. Thanks also have to be extended to all the personnel at Richards-Gebaur Air Force Base who helped us so much throughout this experiment. A special thanks to all the facility support staff whose hard work made this experiment the success that it was.

A special note of thanks has to be made to NCAR's Research Data Program, who worked with us to develop the STORM-FEST CD-ROM and for providing the satellite photographs used in this document. Thanks also to NOAA's Climate Analysis Center and Meteorological Operations Division for use of the Daily Weather Map series.

The funding agencies include:

Air Force Office of Scientific Research  
Federal Aviation Administration  
National Aeronautics and Space Administration  
National Oceanic and Atmospheric Administration  
National Science Foundation  
U.S. Department of Agriculture  
U.S. Geological Survey

## FURTHER INFORMATION

If there are questions regarding STORM-FEST or the data management system, contact:

*John Cunning*  
U.S. Weather Research Program Office  
STORM-FEST Project Director  
(303) 497-8900

*Steve Williams*  
UCAR/Office of Field Project Support  
STORM-FEST Field Data Coordinator  
(303) 497-8987

# Table of Contents

|                                                      |     |
|------------------------------------------------------|-----|
| Preface and Acknowledgements .....                   | i   |
| Table of Contents .....                              | iii |
| 1.0 Introduction .....                               | 1   |
| 1.1 Components of the STORM-FEST Field Project ..... | 1   |
| 1.2 Primary Objectives of STORM-FEST .....           | 2   |
| 1.3 STORM-FEST Data .....                            | 3   |
| 1.3.1 The STORM-FEST Data Management System .....    | 5   |
| 1.3.2 STORM-FEST CD-ROMS .....                       | 11  |
| 2.0 Observing Networks and Data Collection .....     | 13  |
| 2.1 Surface Data .....                               | 13  |
| 2.1.1 National Networks .....                        | 13  |
| 2.1.2 State and Regional Networks .....              | 20  |
| 2.1.3 Research Networks .....                        | 26  |
| 2.1.4 Composite Surface Data Sets .....              | 29  |
| 2.2 Upper Air Data .....                             | 30  |
| 2.2.1 Surface-based Rawinsonde .....                 | 30  |
| 2.2.2 Aircraft-Based Dropwindsonde .....             | 35  |
| 2.2.3 Profilers .....                                | 36  |
| 2.2.4 Composite Upper Air Data Set .....             | 37  |
| 2.3 Radar Data .....                                 | 37  |

|     |                                      |     |
|-----|--------------------------------------|-----|
| 2.4 | Satellite Data                       | 42  |
| 2.5 | Aircraft Data                        | 46  |
| 2.6 | Model Data                           | 48  |
| 3.0 | Daily Weather and Operations Summary | 53  |
|     | 1 February 1992                      | 55  |
|     | 2 February 1992                      | 61  |
|     | 3 February 1992                      | 67  |
|     | 4 February 1992                      | 73  |
|     | 5 February 1992                      | 79  |
|     | 6 February 1992                      | 85  |
|     | 7 February 1992                      | 91  |
|     | 8 February 1992                      | 97  |
|     | 9 February 1992                      | 103 |
|     | 10 February 1992                     | 109 |
|     | 11 February 1992                     | 115 |
|     | 12 February 1992                     | 121 |
|     | 13 February 1992                     | 127 |
|     | 14 February 1992                     | 133 |
|     | 15 February 1992                     | 139 |
|     | 16 February 1992                     | 145 |
|     | 17 February 1992                     | 151 |
|     | 18 February 1992                     | 157 |
|     | 19 February 1992                     | 163 |
|     | 20 February 1992                     | 169 |
|     | 21 February 1992                     | 175 |
|     | 22 February 1992                     | 181 |
|     | 23 February 1992                     | 187 |
|     | 24 February 1992                     | 193 |
|     | 25 February 1992                     | 199 |
|     | 26 February 1992                     | 205 |
|     | 27 February 1992                     | 211 |
|     | 28 February 1992                     | 217 |

|                                                                                   |     |
|-----------------------------------------------------------------------------------|-----|
| 29 February 1992 . . . . .                                                        | 223 |
| 1 March 1992 . . . . .                                                            | 229 |
| 2 March 1992 . . . . .                                                            | 235 |
| 3 March 1992 . . . . .                                                            | 241 |
| 4 March 1992 . . . . .                                                            | 247 |
| 5 March 1992 . . . . .                                                            | 253 |
| 6 March 1992 . . . . .                                                            | 259 |
| 7 March 1992 . . . . .                                                            | 265 |
| 8 March 1992 . . . . .                                                            | 271 |
| 9 March 1992 . . . . .                                                            | 277 |
| 10 March 1992 . . . . .                                                           | 285 |
| 11 March 1992 . . . . .                                                           | 293 |
| 12 March 1992 . . . . .                                                           | 301 |
| 13 March 1992 . . . . .                                                           | 307 |
| <br>Appendix A: Station Locations . . . . .                                       | 313 |
| <br>Appendix B: The MAMS and Wildfire ER-2 Aircraft Data for STORM-FEST . . . . . | 347 |
| <br>Appendix C: STORM-FEST VAS Schedule . . . . .                                 | 359 |
| <br>Appendix D: Acronym List . . . . .                                            | 365 |
| <br>Appendix E: Participants and Mailing List . . . . .                           | 371 |

---

**U.S. Weather Research Program**  
**STORM-FEST Operations Summary and Data Inventory**

# **Introduction**

# 1.0 Introduction

The STORM-Fronts Experiment Systems Test, STORM-FEST, investigated the structure and evolution of fronts, embedded precipitation and associated mesoscale phenomena in winter storms over the central United States. The field phase of STORM-FEST was from 1 February through 15 March 1992. This field effort provided the research background for the major Winter/Spring Multiscale Field Experiment planned for the mid-to-late 1990's and provided the experience with observational systems and other U.S. Weather Research Program (formally called the STORM Program) elements (4DDA, numerical modeling, data management, etc.) needed to insure success of other field experiments planned as part of the U.S. Weather Research Program.

## 1.1 Components of the STORM-FEST Field Project

The field phase of STORM-FEST was composed of three closely related components:

- A sharply focused investigation of the structures and evolutions of fronts and associated mesoscale phenomena in the central United States, with emphasis on precipitation and severe weather (referred to as "Frontal and Mesoscale Studies").
- A research assessment of new operational and research meteorological instrumentation, facilities, composite observational networks and other STORM elements (referred to as "Systems Tests").
- A study to begin to understand mesoscale prediction capabilities and limitations in active frontal regions (referred to as "Weather Prediction Studies").

There was nearly complete overlap in the observational requirements to meet the objectives in each of these three components. The frontal and mesoscale studies required data over the same time period and spatial scales as that required for making and verifying weather forecasts. The new observational systems will be evaluated on the bases of their contributions toward

understanding mesoscale processes and helping to make and verify weather predictions. Similarly, the research assessment of new observing systems also required detailed measurements on the mesoscale as needed for the frontal and mesoscale studies.

## **1.2 Primary Objectives of STORM-FEST**

Four primary objectives were identified for each of the three components of STORM-FEST. They are as follows:

For the Frontal and Mesoscale Studies:

- To begin to document the three-dimensional structures, kinematics and evolutions of the various types of fronts that affect the central United States.
- To begin to determine the dynamical and physical processes governing the structures and evolutions of fronts that affect the central United States.
- To begin to document the mesoscale organization and substructure of precipitation features associated with fronts in the central United States.
- To begin to determine the dynamical and physical processes governing the formation, maintenance, and dissipation of the mesoscale features associated with fronts in the central United States.

For the Systems Tests:

- To determine the utility of new observing systems, techniques and observation networks for mesoscale research, prediction, and warnings.
- To assess the ability to produce a four-dimensional mesoscale representation of the atmosphere, consistent with observations and model dynamics.

- To assess the effectiveness of Experimental Forecasting Facilities (EFF) as a mechanism for rapid transfer of technology and research results to operational mesoscale forecasting.
- To assess the ability of the STORM-FEST Data Management system to provide timely and flexible access to operational and research data sets.

For the Weather Prediction Studies:

- To begin to understand the capabilities and limitations of public forecast of hazardous winter weather in active frontal zones.
- To begin to understand the capabilities and limitations of aviation forecasts in active frontal regions.
- To begin to understand the capabilities and limitations of mesoscale model analyses and predictions in active frontal regions.
- To understand the capabilities and limitations of 6- to 48-h forecasts downstream of supplemental observations in active frontal regions.

### 1.3 STORM-FEST Data

To achieve the above objectives, the STORM-FEST experiment collected data sets from the operational, enhanced operational, and research observational systems (see Chapter 2 for further information on these data types and special composite data sets). Operational data and in several cases enhanced operational data were collected during the entire STORM-FEST period. Other enhanced data and research data were collected during Intensive Observation Periods, IOPs. During the approximate 45 days of STORM-FEST there were 20 IOPs. These are briefly presented in Table 1.1 and are the primary focus of Chapter 3, which presents an overview of the daily operations during STORM-FEST, including special data collected during the IOPs.

**TABLE 1.1****STORM-FEST IOP LIST**

| IOP NO. | START, UTC (Date/Time) | STOP, UTC (Date/Time) | FOCUS                                                          |
|---------|------------------------|-----------------------|----------------------------------------------------------------|
| 1       | Feb 3/12               | Feb 4/00              | Weak dry front and K/A calibration flight                      |
| 2       | Feb 6/12               | Feb 7/00              | Dry cold front (IA and MO)                                     |
| 3       | Feb 9/12               | Feb 9/21              | Stationary front (Freezing-rain) w/Wy K/A, convair             |
| 4       | Feb 10/06              | Feb 11/00             | Dry cold front (IA)                                            |
| * 5     | Feb 11/00              | Feb 12/12             | Trough frontogenesis, dual doppler, A/C, precip                |
| * 6     | Feb 14/00              | Feb 15/06             | Structure of warm/cold fronts, dynamics of mesoscale rainbands |
| * 7     | Feb 14/18              | Feb 18/12             | Structure and dynamics of fronts                               |
| 8       | Feb 19/12              | Feb 19/21             | Boundary layer (limited obs)                                   |
| 9       | Feb 21/16              | Feb 22/03             | Boundary layer and frontogenesis                               |
| 10      | Feb 22/12              | Feb 23/00             | Structure of non-precipitating cold front                      |
| * 11    | Feb 23/18              | Feb 25/01             | Cold front and rainband studies                                |
| 12      | Feb 25/12              | Feb 26/00             | Boundary layer                                                 |
| 13      | Feb 27/15              | Feb 28/00             | Boundary layer                                                 |
| 14      | Feb 28/23              | Feb 29/04             | Upper level jet dynamics                                       |
| 15      | Mar 1/15               | Mar 2/00              | Boundary layer                                                 |
| * 16    | Mar 3/18               | Mar 5/12              | Cyclogenesis, rainbands, cold front                            |
| * 17    | Mar 5/12               | Mar 10/14             | Cyclogenesis, frontal passage, structure of major winter storm |
| 18      | Mar 10/16              | Mar 11/00             | Boundary layer                                                 |
| 19      | Mar 11/12              | Mar 12/06             | Upper level jet, rainbands, boundary layer                     |
| 20      | Mar 12/18              | Mar 12/22             | Boundary layer, systems test                                   |

\*Major cyclonic events

Data for STORM-FEST will be distributed primarily in two methods; an on-line data management system and a set of CD-ROMS.

### **1.3.1 The STORM-FEST Data Management System**

The STORM-FEST Data Management System called the Cooperative Distributed Interactive Atmospheric Catalog System (CODIAC) provides a new concept in data access for the mesoscale investigator. The system was developed by the USWRP Project Office, the Forecast Systems Laboratory, and the National Climatic Data Center to provide researchers access to a distributed meteorological database held at geographically dispersed data centers. CODIAC offers investigators the means to identify data sets of interest, the facilities to view metadata associated with the data sets (including inventory information normally included in the Operations Summary), and the ability to automatically obtain data via either removable media or Internet file transfer.

#### **CODIAC SYSTEM FEATURES**

The CODIAC system provides a variety of functions and features. A brief description of the major components (or modules) is provided below:

##### *Data Set Guide*

The data set guide provides descriptions of the various data sets supported by the system. The descriptions includes such aspects as the data set title, abstract, spatial and temporal resolution, archive center, level of quality control, type of observing system or network used to collect the data set, and the name and other contact information for the curator of the data set.

The data set guide may be searched by a number of different methods, such as project, time, area, and observing system or network. Key word search of the abstracts is also provided.

##### *Project Information*

The project information module provides a description of field experiments (projects) whose data are managed by the system. This includes a brief overview of the project, including a

description of scientific objectives, and the spatial and temporal domain of the project. Additional information on the timing and facilities deployed during individual IOP's and operations logs for the various platforms involved in the project, such as radars, aircraft, and satellite schedules will be available by mid-1993. Researchers can search this information to identify IOPs of interest, and use the dates and times found to search for data sets.

#### *Station Information*

This module provides detailed descriptions of the observing platforms utilized to collect the data. Information such as station location, name, parameters observed, identification numbers, and times in operation are included in the description. This information may be searched by a number of criteria.

#### *Order Entry/Data Delivery*

The Order Entry/Data Delivery module provides the user with the ability to obtain data. This module is composed of two parts: one which allows users to request delivery of data on removable media such as 9-track or Exabyte tape, and one which allows users connected to the Internet to download data that are on-line directly to their workstation or personal computer.

On-line data is provided at no charge through a cooperative agreement between the USWRP Office and the other data centers involved. STORM-FEST investigators will also receive data on off-line media, free of charge, although the availability of this service from the NCDC is contingent upon sufficient funds available in a special account set up for this purpose. In either case, the system will compute and display the price for the desired data.

#### *Inventory Information*

The inventory module provides detailed information for each data set, and specific times that data are in the archive. In most cases, this information is produced from the archived data files and is very accurate. The information is currently presented in table form although a graphical display module should be available by Summer 1993.

### *Data Set Notes*

This module is an experimental implementation. It offers any scientist using the system the ability to attach comments to a data set. For example, if a researcher found a portion of a data set to be questionable, they could attach a note to the data set describing the time period or stations that were suspect. Other investigators who use the data set later may then review the notes and become immediately aware of potential problems.

### *Reference Contacts*

This is another experimental module. When a researcher obtains data through the Order Entry/Data Delivery system, they will be asked if they are willing to volunteer as a reference contact for the data set. If they agree, the system will ask them to characterize their familiarity with the data set, and then their name and contact information (address, phone number, etc.) will be made available to other users who request it. It is hoped that this facility will provide a way for users and potential users of a given data set to network with scientists that are experienced in using the data set.

### *Daily Weather Maps*

On-line daily weather maps provide another resource for identifying research cases of interest. The daily weather maps for each day of STORM-FEST have been digitized, and stored in the database. Researchers running an X-windows software can specify the day of interest, and the weather map for that day will be displayed in a window. This feature will be available in late 1993.

## TO ACCESS THE SYSTEM

The CODIAC system may be accessed by two methods: Internet and dial-up. Each of the methods is described below. However, access via Internet is preferred, as it provides the only means to support the X-terminal emulation required to utilize the full capabilities of the system. Access into the system is provided by the examples given in Figures 1.1-1.4. Commands to be entered by the user are indicated in **bold type**.

### *Access Via Internet*

To fully utilize the system across Internet, users should have some knowledge of the configuration of the local system they are using. In particular, users must know the information listed in Figure 1.1.

Once questions in Figure 1.1 have been answered, users follow the sample dialogue given in Figure 1.2 (X-Window users), or Figure 1.3 (non-X-Window users). Note that editorial comments are contained between the < > symbols, and that user entries are in **bold** print.

### *Access Via Modem*

Access via modem is provided by the NCAR modem bank. To obtain the toll-free number for access to NCAR, contact the Consultant On Duty (COD) at (303) 497-1278. After obtaining the number, follow the dialogue in Figure 1.4. Note that modem access supports character terminals only.

```
Does the machine that you are using support the X-Window windowing system?  
If yes:  
    What is the internet (IP) address of the machine that you are using?  
    What type of keyboard does your machine have?  
    Keyboards that are supported under the X-Window system are:  
        PC/AT          DEC Stations  
        HP 9000/300    IBM System/6000  
        SUN3           SUN4  
If no:  
    What terminal type are you running or does your software emulate?  
    Terminal types that are supported are:  
        VT100, VT220, etc.      PC running PC/TCP (VT100)
```

Figure 1.1. Information needed to access the CODIAC System.

```

xhost +storm.ofps.ucar.edu

telnet storm.ofps.ucar.edu
Trying 128.117.90.53 ...
Connected to 128.117.90.53.
SunOS UNIX (storm.ofps.ucar.edu)

login: storm
Password: research

<Introductory text deleted to save space>

Are you running X-windows?[y/n/quit]->y

Enter the internet ADDRESS of your X-server->999.999.99.99
999.999.99.99 is alive

Select your KEYBOARD type by number:

 1) PC/AT keyboard          5) SUN3 Keyboard
 2) DEC Keyboard           6) SUN4 Keyboard
 3) HP 9000/300 Keyboard    7) Exit
 4) IBM System/6000 Keyboard

Enter the number of your choice->6
Emergency exit key = CTRL/C

<The X-Window should now appear on your display>

```

Figure 1.2. A CODIAC System login session for an X-Window system user.

```

telnet storm.ofps.ucar.edu
Trying 128.117.90.53
Connected to 128.117.90.53
SunOS UNIX (storm.ofps.ucar.edu)

login: storm
Password: research

<Introductory text deleted to save space>

Are you running X-windows?[y/n/quit]->n
Emergency exit key = CTRL/C

Select your terminal type by number:

 1) vt100, vt220, etc.
 2) PC running an vt100, vt220, etc. emulation (PC/TCP v2.05)
 3) SUN Console
 4) exit

Enter the number of your choice->1

<The CODIAC System Window should now be displayed on your terminal>

```

Figure 1.3. A CODIAC System login session for a non X-Window system user.

```
NCAR Host Connection Account
US Govt Property: Unauthorized use is a Federal Offense.
+++++
+   NCAR Host Connection Account      +
+   (ONLY NCAR HOSTS MAY BE REACHED)  +
+
+       Enter the hostname, or IP #   +
+++++
What host do you want to connect to --> storm.ofps.ucar.edu
Checking name via domain name system.....
Enter destination host login name: storm
Enter password: research

trying 128.117.90.53...
Connected to 128.117.90.53.
Escape character is '\377'.

<At this point you will be connected to the CODIAC System.
Follow the session transcript shown in Figure 2.>
```

---

Figure 1.4. Connection to the CODIAC System using a modem.

### 1.3.2 STORM-FEST CD-ROMS

A CD-ROM set containing STORM-FEST data was produced by the NCAR/Research Data Program, UCAR/Office of Field Project Support, and NCAR/Research Aviation Facility. The CD-ROM set contains the following data: NCAR King Air, University of Wyoming King Air, University of Washington C-131, NOAA P-3, NOAA Profilers, Soundings (CLASS, NWS, L2D2, and AES), NCAR ASTER, Surface composite data and Precipitation composite data in NetCDF format, GOES satellite, WSI NOWRAD, and CP4 in Zeb Image format.

The Zeb and WINDS software packages were also included on the CD-ROMs. These software packages provide versatile interactive displays. Zeb is a comprehensive integration and display program that has been used in real-time and post-processing analysis. Zeb provides a variety of displays including surface plots, vertical cross-sections, Skew-T, X-Y graphs, and Profiler time-height plots. In addition, the Zeb software provides access routines that allow data to be moved between a user's analysis package and Zeb. The WINDS software allows display of all the aircraft data in a variety of formats including horizontal tracks, time-series, altitude plots, Skew-T, and ASCII prints.

Both Zeb and WINDS require a Sun workstation running OS 4.1.2, either X11R4 or greater, or Open Windows 3.0, a minimum of 16 MBytes of RAM, 32 MBytes minimum swap space, and a CD-ROM player. However, data files can be accessed using most UNIX workstations. Further information on obtaining the CD-ROM set can be obtained from the Office of Field Project Support.

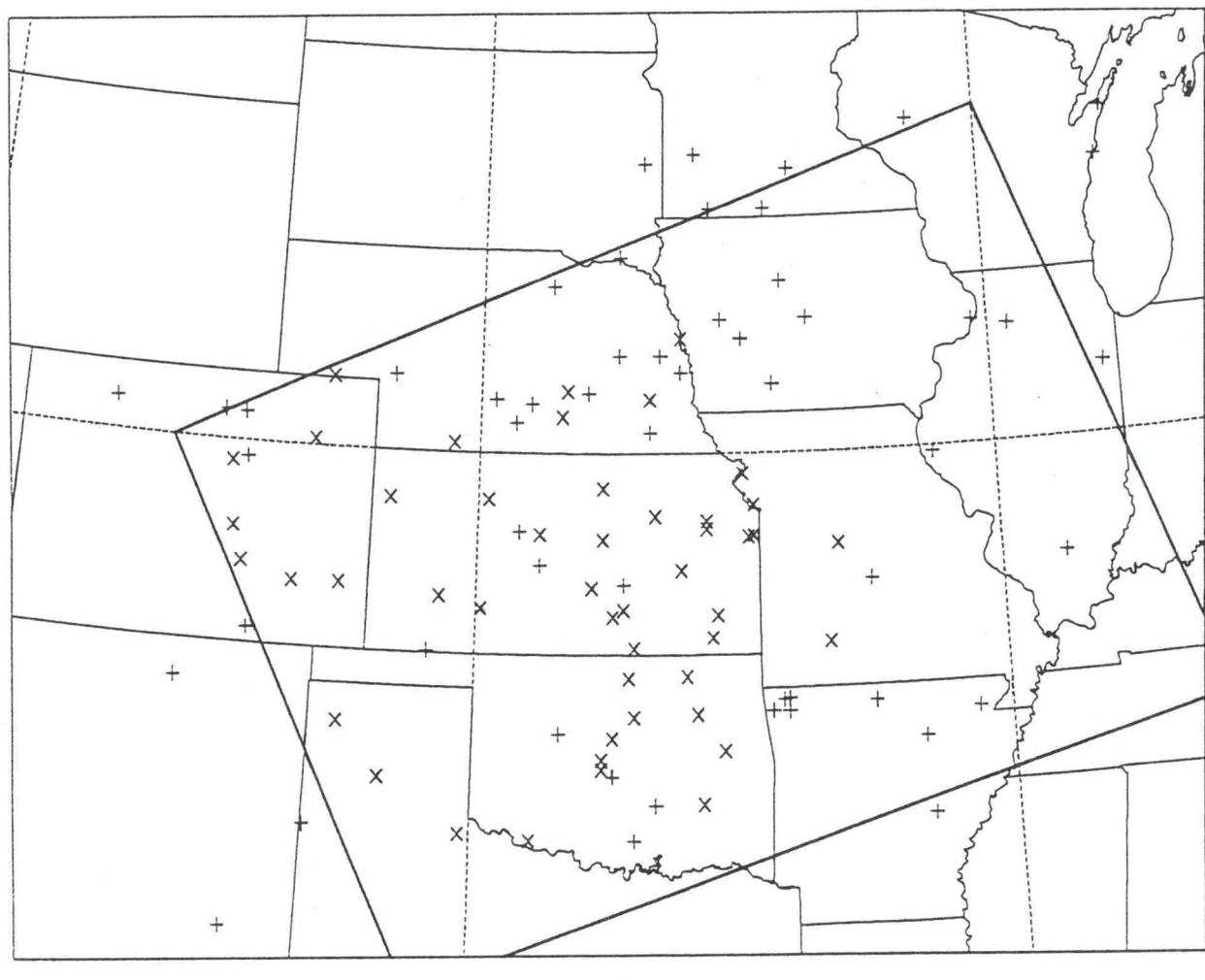
UCAR/OFPS is currently working on creating a CD-ROM containing selected operational and research STORM-FEST model output in gridded fields (GRIB format) and display software. This CD-ROM would be a "stand alone" package from the 3 CD-ROM set previously described. The STORM-FEST model output CD-ROM is expected to be completed in Autumn 1993.



# **Observing Networks and Data Collection**

## 2.0 Observing Networks and Data Collection

New National Weather Service (NWS) operational observing systems supplemented with research facilities, provided the basis to obtain an unparalleled data set on fronts and mesoscale phenomena in a region where winter weather has received little detailed study. This data set provided documentation of the three dimensional structure, airflow, and evolution of the various types of fronts and associated precipitation that affect the central United States in winter with the ability to better understand the dynamics and physical process governing the structure and evolution of these features. New operational observing systems data will also be used to help assess the various components of the systems tests portion of the experiment. The following sections describe the various data sets that were archived for STORM-FEST, as well as information regarding their archive locations and accessibility.


### 2.1 Surface Data

Surface data were obtained from United States and Canadian national, regional, and research networks. Most of the larger scale national observations were hourly with some regional/special networks taking measurements as frequently as every minute. (A complete listing of the networks and site locations are given in Appendix A.)

#### 2.1.1 National Networks

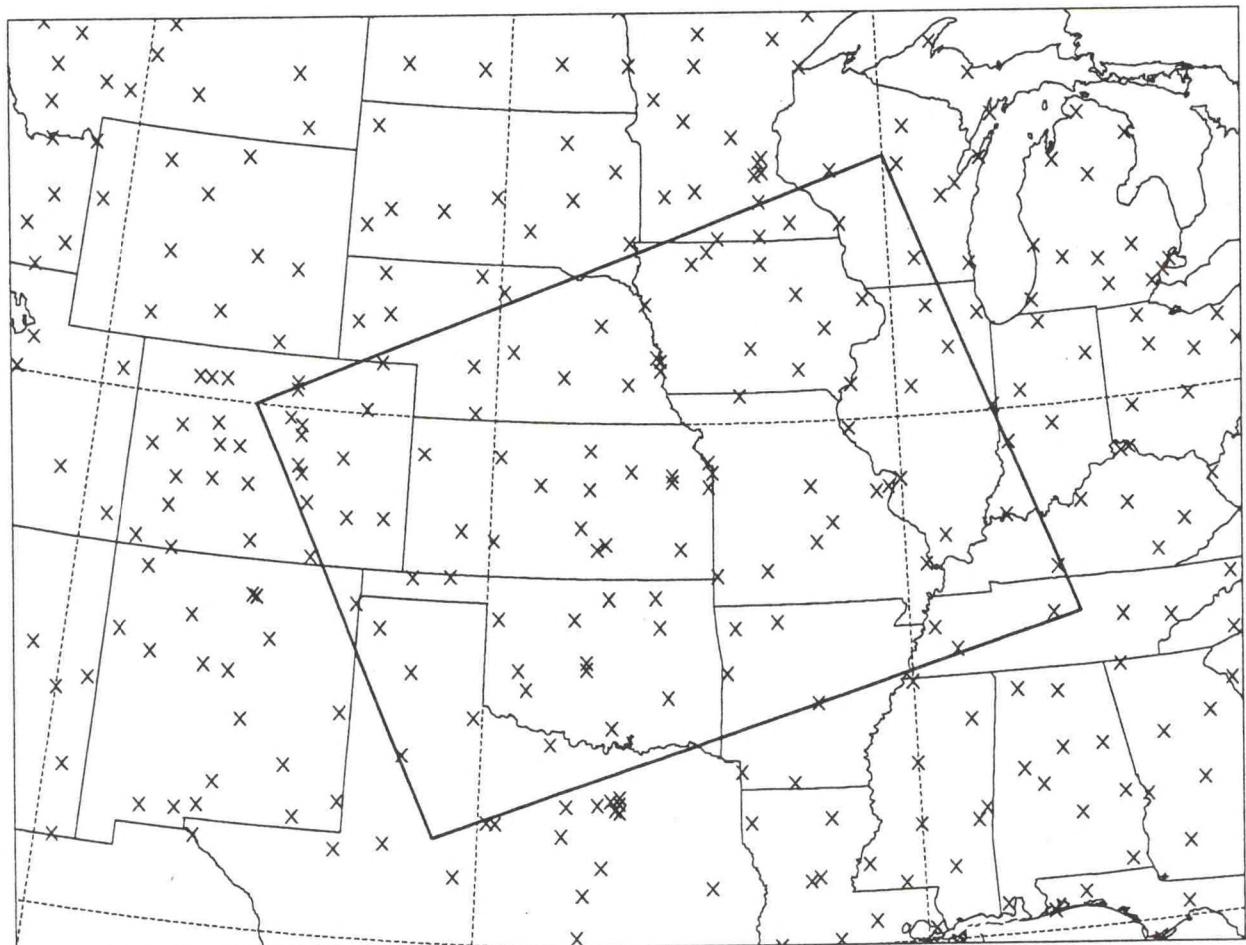
##### *Automated Surface Observation System (ASOS) Data*

The National Weather Service, Federal Aviation Administration (FAA), and the U.S. Navy are installing a national network of ASOS stations as part of the NWS modernization plan, FAA airport upgrades, and DoD installations. Forty-five stations were installed by the end of STORM-FEST, primarily in the Kansas-Oklahoma area (see Fig. 2.1). Data collected from each station consisted of hourly and 5-min averages of air temperature, dewpoint, wind speed and direction (incl. gust), barometric pressure, altimeter, density altitude, visibility, sky conditions (cloud cover and height) and precipitation (5-min totals). Visibility and sky condition data were computed using



ASOS x      AWOS +

**Figure 2.1** Location of the ASOS and AWOS surface observation stations that were available during STORM-FEST.


a 30-min running average. In addition, 1-minute resolution ASOS data were collected from Topeka, Kansas, collocated with an NCAR PAM II station. Only a few ASOS sites were officially commissioned during STORM-FEST, so collocated manual observations were also taken by the NWS as well. (Caution should be exercised by the researcher when using uncommissioned ASOS data.) ASOS data were collected in real-time by the STORM-FEST Data Management Center (SFDMC) and are available through the CODIAC system.

#### *Aviation Weather Observation System (AWOS) Data*

The AWOS data collected for STORM-FEST consisted of both Federal and Non-Federal networks of automated weather reporting stations located at 48 airports in the STORM-FEST domain (see Fig. 2.1). The FAA coordinated the operation, maintenance, and data dissemination of the Federal network, while individual airports/cities operated and maintained non-federal network stations. Most of the archived AWOS data consists of 20-minute averages of air temperature, dewpoint, altimeter, visibility, wind speed and direction, barometric pressure, sky conditions (cloud cover and height), density altitude, and precipitation averages. Winds were averaged using a 2-5 min running mean and cloud heights were averaged using a 30-min running mean. The 20-min data were collected in real-time by the SFDMC and are available through the CODIAC system. In addition, the Iowa Department of Transportation collected 1-min resolution data for Iowa AWOS stations, and are also available through the CODIAC system.

#### *NWS/FAA Hourly Airways and Cooperative Observer Data*

The existing national network of NWS first order stations, NWS Cooperative Observers, and FAA controlled airports collected routine temperature, precipitation, and other meteorological measurements. A map of the Surface Aviation Observation (SAO) network is shown in Fig. 2.2. All these data were collected, processed, quality controlled, and archived at the National Climatic Data Center (NCDC) as part of existing national data sets. Table 2.1 contains a description of these data sets with observation schedules and general observation parameters. The NWS first order and FAA controlled airport stations were usually fully instrumented and therefore recorded a complete range of meteorological parameters. The observations were generally recorded hourly or for a 24 hour period (midnight to midnight local time). Most of the private NWS Cooperative Observer Stations collected only daily maximum/minimum temperature data and/or 24-hour



**Figure 2.2** Location of the SAO (Surface Aviation Observation) network sites.

**TABLE 2.1****NCDC SURFACE DATA SET DESCRIPTION**

| DATA SET NO. | DATA SET NAME                    | OBSERVATION SCHEDULE (Local Time)                        | DATA SET PARAMETERS                                                                                                                                                                                                                        |
|--------------|----------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TD-3200      | Summary of the Day (Cooperative) | Daily;<br>Variable Times:<br>(most 7A to 7A or 7P to 7P) | Temperature (min/max)*,<br>Precip (24-h)*, Evap (amt),<br>Soil Temperature,<br>Wind (24-h) movement<br><i>*most stations only report</i>                                                                                                   |
| TD-3210      | Summary of the Day (First Order) | Daily;<br>2400 to 2400                                   | Temperature (min/max/mean),<br>Relative Humidity (avg),<br>Dew Point Temperature (avg),<br>Deg Day (heat/cool),<br>Weather (type), Wind (avg/gust),<br>Sun (%), Sky (cover),<br>River (height), Ice (thick),<br>Pressure (avg sta/avg sea) |
| TD-3240      | Hourly Precipitation             | Hourly Daily                                             | Precip (1-hr, 24-h totals)                                                                                                                                                                                                                 |
| TD-3260      | 15 Minute Precipitation          | 15-min Daily                                             | Precip (15-min, 24-h totals)                                                                                                                                                                                                               |
| TD-3280      | Surface Airways Hourly           | Hourly                                                   | Cloud (Amount, ceiling, type),<br>Visibility (horizontal),<br>Wind (speed/dirc),<br>Temp (dry/wet/Dew Point), Sky (cover), Relative Humidity (%),<br>Pressure (sta/sea/alt),<br>Present Weather (type)                                     |

precipitation data. Certain NWS Cooperative Observer Stations recorded higher frequency (i.e., 15-min and hourly) precipitation data. A complete map of all the Cooperative Observer sites measuring precipitation is shown in Fig. 2.3). Data set information and data collected from these networks during the STORM-FEST period are available through the CODIAC system.

#### *U.S. Military Surface Observation Data*

Routine DoD observations from US military facilities around the world were decoded, validated, resorted and archived at the U.S. Air Force Global Weather Center. These data were then further quality controlled and reformatted by the U.S. Air Force Air Weather Service before transfer to NCDC for archival and dissemination. A subset of these data were extracted for the STORM-FEST domain and period and are available through the CODIAC system.

#### *Canadian AES Observations and Volunteer Observer Data*

The Canadian Atmospheric Environment Service (AES) routinely collected data from an existing network of both hourly AES observer stations and daily summaries from over 3,000 volunteer observer stations across Canada. The data were transferred to the Canadian AES Climate Center in Downsview, Ontario for digitizing, quality assurance, and archiving. Data for the STORM-FEST period are available through the AES Climate Center upon request. Information regarding data access is available through the CODIAC system.

#### *Observed Snow Cover Reports*

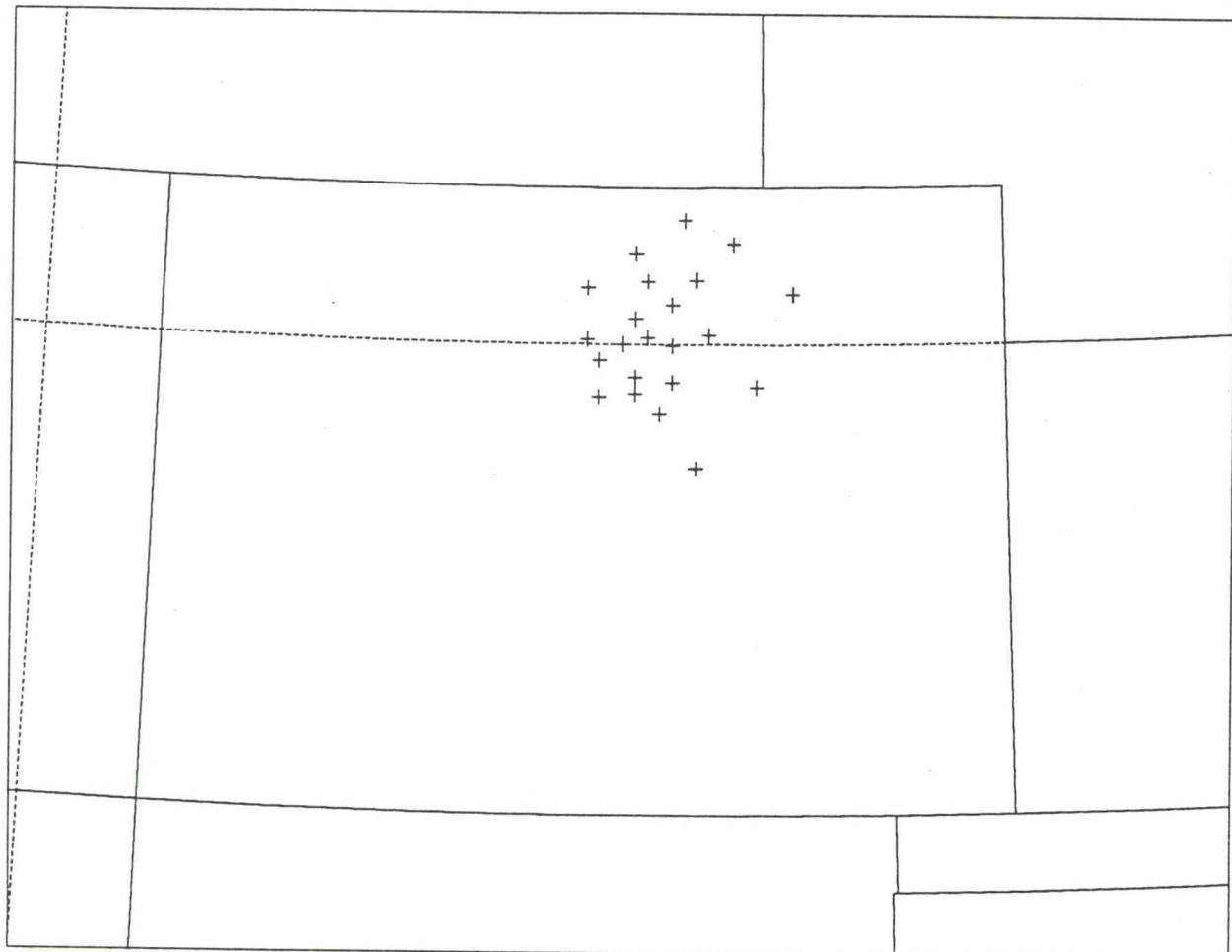
Observed snow cover charts covering the conterminous United States and Southern Canada were prepared by NMC as part of their routine analysis and forecasting procedures. Data plotted on these charts used automatically processed data sets from the 1200 UTC Weather Service C circuit (3-h synoptic and hourly aviation observations). Total snow depth and previous 6-h snow increase are depicted on these charts. These daily charts are transferred to NCDC and processed on 35-mm microfilm for final archiving and distribution. These data for the STORM-FEST period are available through NCDC upon request. Information regarding data access is available through the CODIAC system.

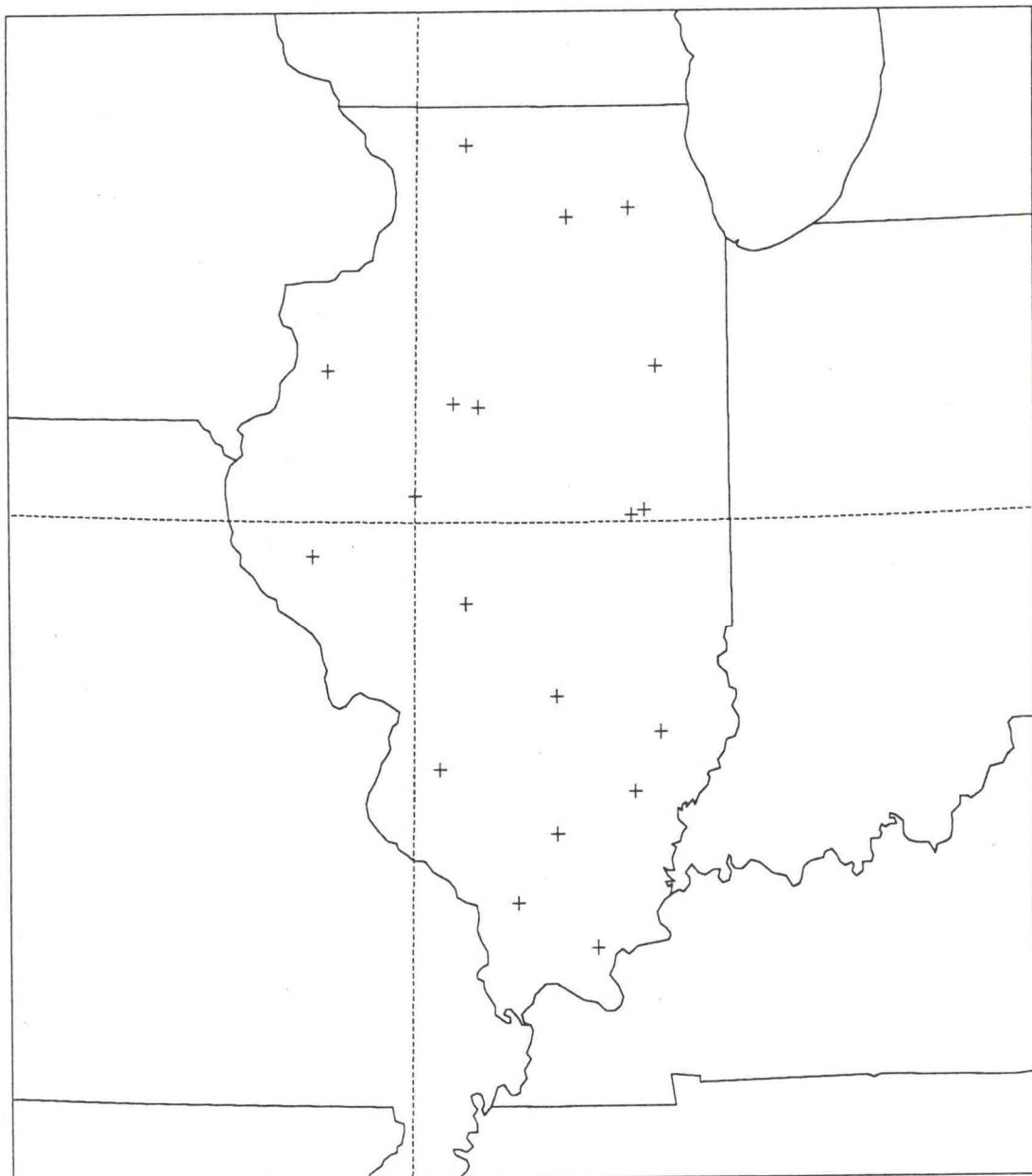


**Figure 2.3** Location of the NWS Cooperative Observer Sites for precipitation.

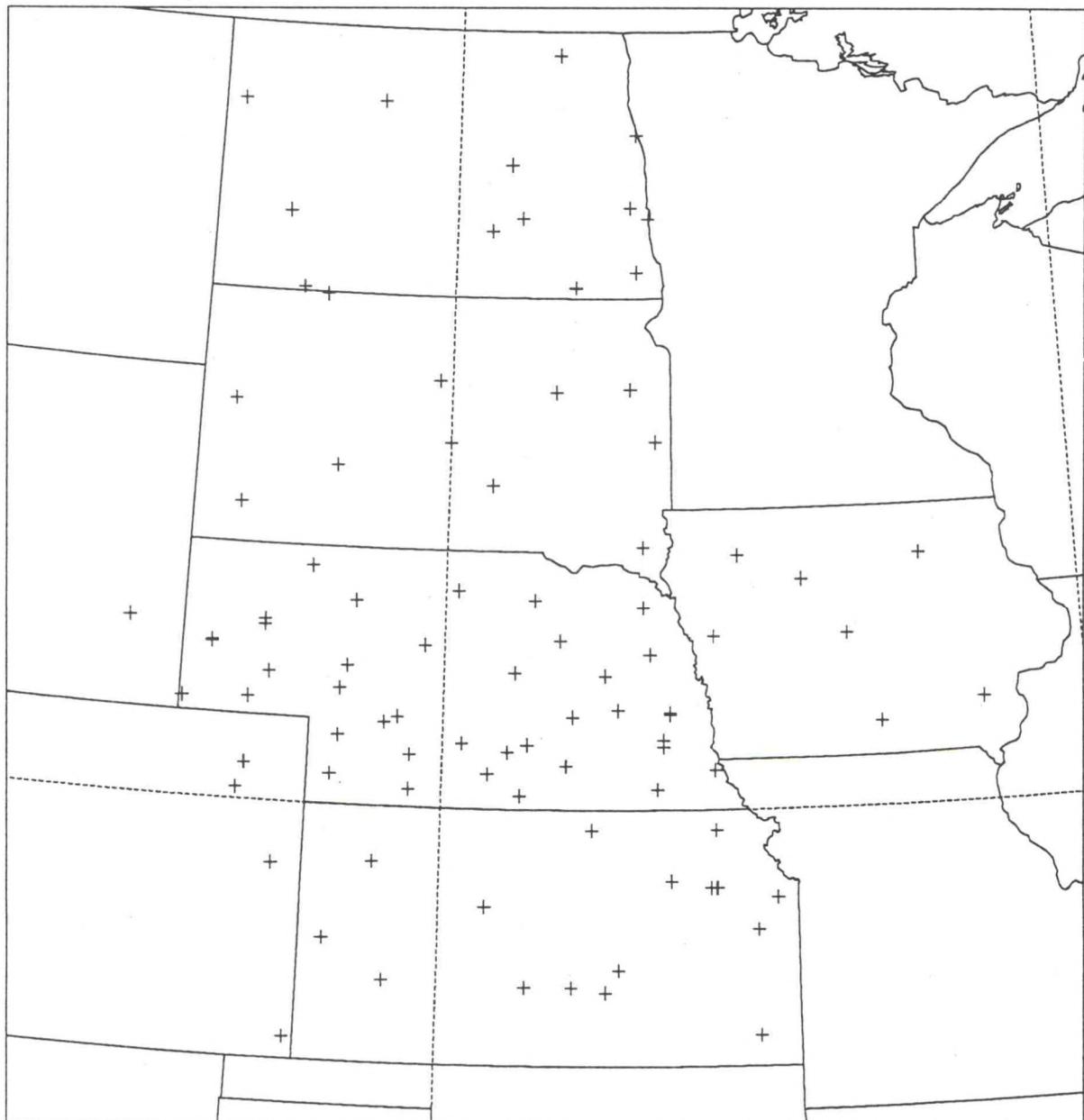
## 2.1.2 State and Regional Networks

### *NOAA Forecast Systems Laboratory, Colorado Mesonet Data*


The NOAA Forecast Systems Laboratory, FSL, operated and maintained a mesonet of automatic weather stations (22 total) in northeastern Colorado to provide current information on weather conditions that are used for modeling, forecasting, and research (ground truth) purposes (see Fig. 2.4). These stations measured 5-min averages of wind speed and direction, air temperature, dew point, barometric pressure, solar radiation, and 5-min precipitation totals. Each station was polled sequentially every 5-min via dedicated telephone lines from a central computer (VAX 11/780) at NOAA's Forecast System Laboratory (FSL). Data set information and data for the STORM-FEST period are available through the CODIAC system.


### *Illinois Climate Network (ICN) Data*

The Midwest Climate Center operated and maintained an existing network of 19 Agricultural stations throughout Illinois (see Fig. 2.5). These stations collected 5-min averages of air temperature, relative humidity, pressure, wind speed and direction, and precipitation. Special high resolution pressure sensors provided by NASA were installed in the network for STORM-FEST. All data were stored on-site and transferred daily via telephone to a central computer located at the University of Illinois for quality assurance and final archiving. Data set information and data for the STORM-FEST period are available through the CODIAC system.


### *High Plains Climate Network (HPCN) Data*

The High Plains Climate Center operated and maintained an existing network of 86 agricultural and drought monitoring automatic weather stations in Nebraska (35), Kansas (14), Iowa (7), North Dakota (14), South Dakota (10), Eastern Colorado (4), and Eastern Wyoming (2) (see Fig. 2.6). These stations measured hourly averages of air temperature, humidity, wind speed (simple average and vector magnitude), wind direction (vector and standard deviation), solar radiation, soil temperature, and precipitation (hourly totals). These data were stored locally on site and polled via telephone once per day to a central computer at the University of Nebraska at Lincoln for quality assurance and final archiving. Data set information and data for the STORM-FEST period are available through the CODIAC system.

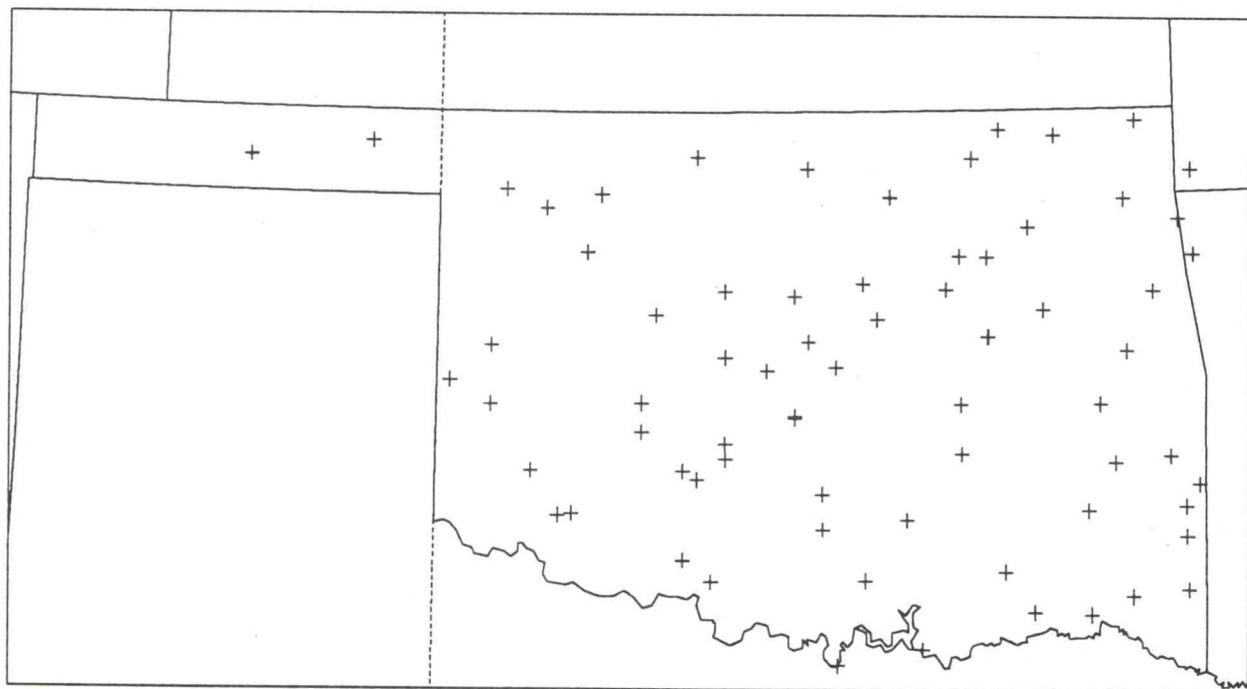




**Figure 2.5** Location of the Illinois Climate Network Sites.



**Figure 2.6** Location of the High Plains Climate Network Sites.


*Flatlands Atmospheric Observatory (FAO) Data*

The NOAA/ERL/Aeronomy Laboratory (AL), Illinois State Water Survey, and the National Science Foundation maintains the Flatlands Atmospheric Observatory, and a network of six digital barometer sites in east central Illinois. Measurements taken at the FAO included a surface meteorological station (wind speed, wind direction, air temperature, humidity, rainfall, and solar radiation at 30-second time intervals), a 49.8 MHz lower tropospheric radar profiler, and radiosonde system (thermodynamic variables only). The barometers were sampled once every 10 seconds and the results averaged over 2 minutes and stored on-site. These averages were downloaded each night over commercial phone lines to the AL in Boulder for quality assurance and final archival. Data set information and data for the STORM-FEST period are available through the CODIAC system.

*USGS Precipitation and Hydrology Network (Oklahoma) Data*

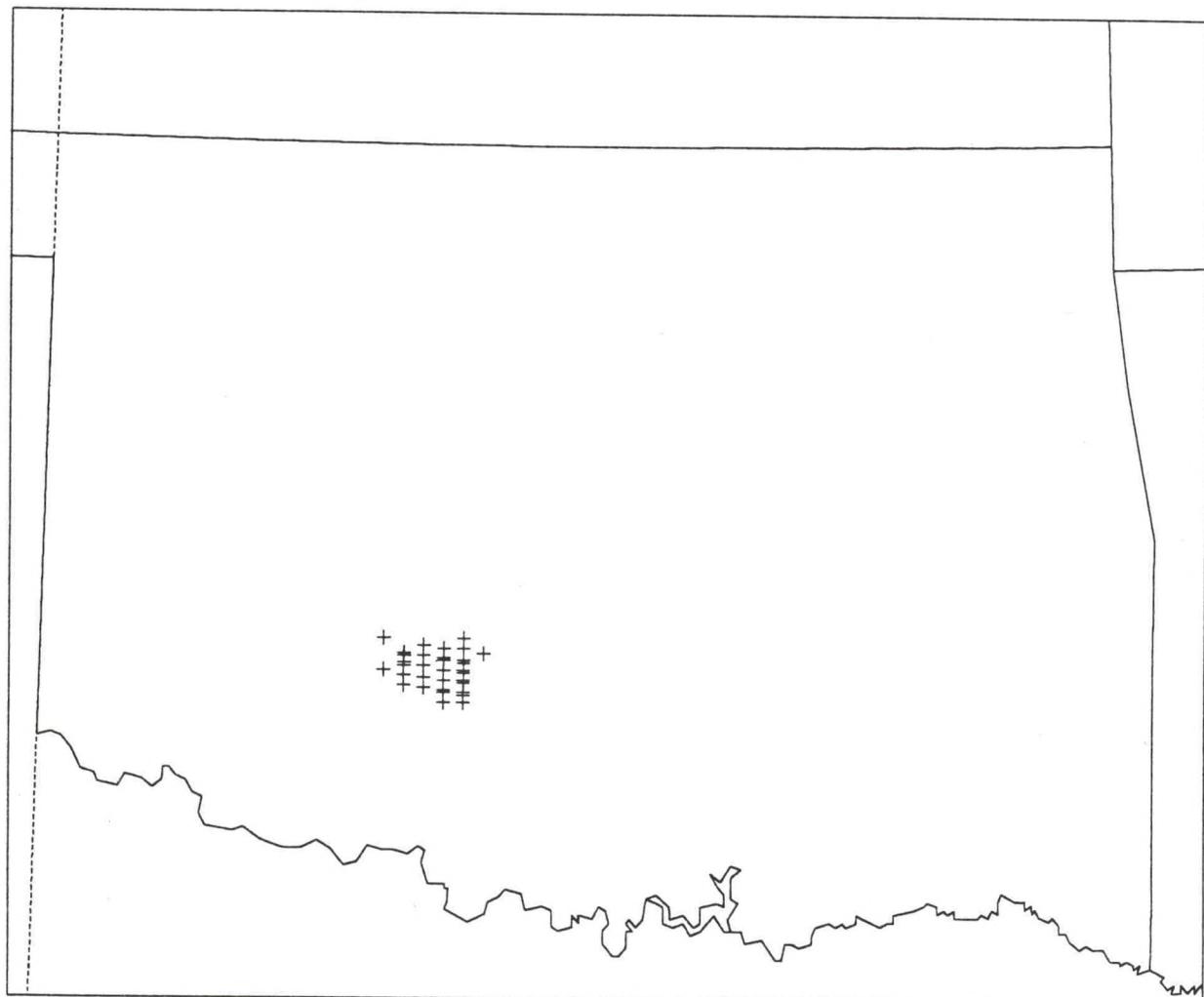
The USGS operated and maintain a network of 91 tipping bucket raingauges and flow streamgauges at their surface-water gauging stations throughout the State of Oklahoma. The locations of the precipitation sites are shown in Fig. 2.7. The data were telemetered automatically every 4 hours for processing and archival as part of the USGS National Water Information System (NWIS). The majority of the precipitation gauges reported 1-h precipitation totals, with a few sites reporting 15-min totals. No provisions for frozen precipitation were made during STORM-FEST. Data set information and data for the STORM-FEST period are available through the CODIAC system.

A streamflow gauging station was located at the outflow of the Little Washita Watershed and at the outflow of an upstream, smaller imbedded watershed, that was part of the Little Washita Basin. The data consisted of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. Streamflow data are available through the USGS National Water Information System (NWIS). Information regarding data access is available through the CODIAC system.

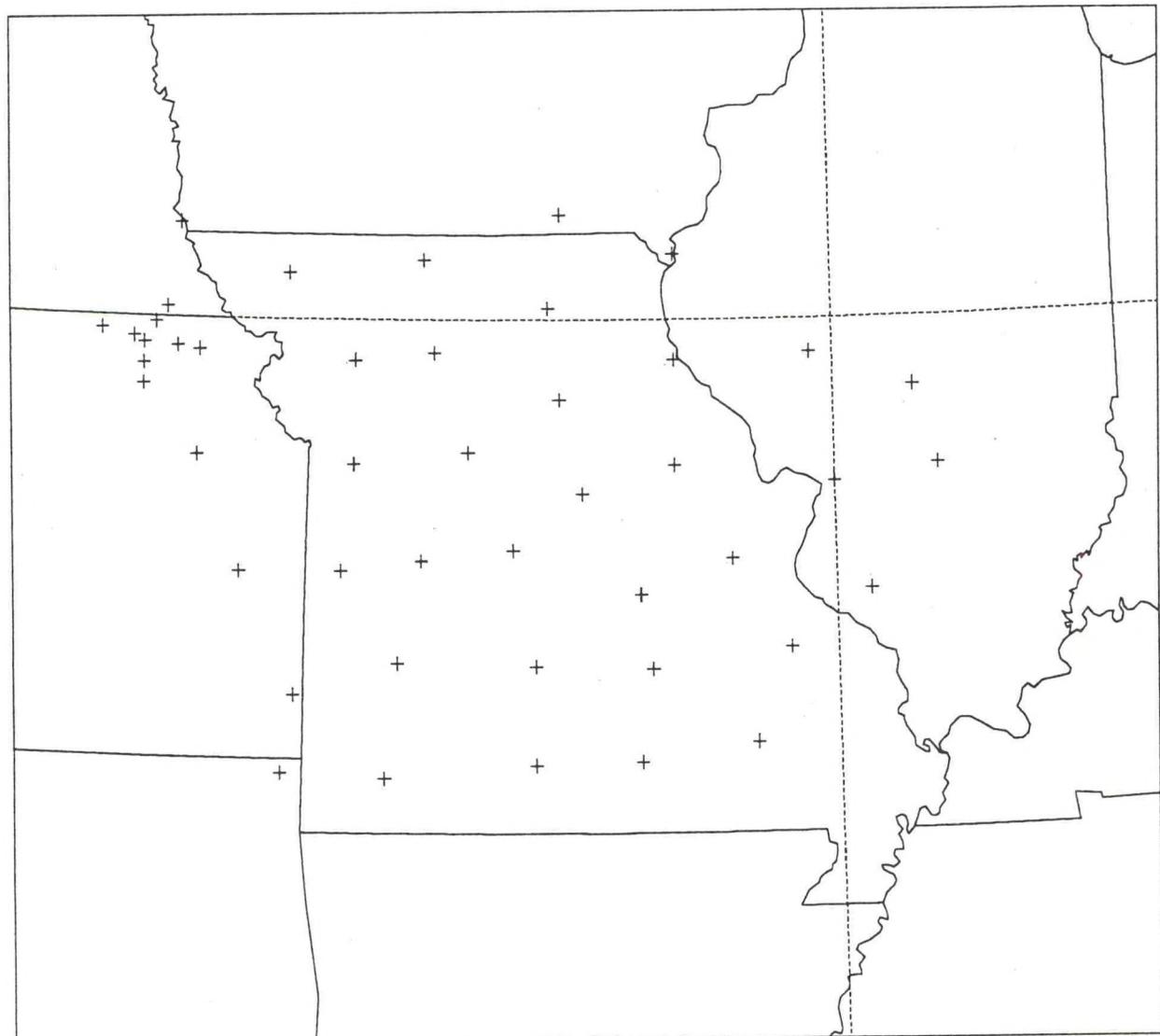


**Figure 2.7** Location of the USGS precipitation gauges in Oklahoma.

### *USDA/ARS Precipitation Network (Little Washita Basin) Data*


The USDA/Agricultural Research Station (ARS) precipitation network, located within the scanning range of two WSR-88D radars, consisted of 44 raingauges spaced over 230 square miles (i.e average spacing of 5 km) comprising the Little Washita watershed in Central Oklahoma (see Fig. 2.8). The network consisted of weighing type (chart recorder) gauges. The weekly charts were digitized into 5-min time and 0.01" resolution totals and quality controlled by ARS before being sent to the SFDMC for final archival. No provisions for frozen precipitation were made during STORM-FEST. Data set information and data for the STORM-FEST period are available through the CODIAC system.

Raindrop size distributions were also measured by a linear array of 3 disdrometers near Chickasha, Oklahoma, specifically installed and operated for STORM-FEST. The disdrometers were located at various spacing to relate scale discontinuities with radar; accessing space-time variability of stratiform precipitation. A drop size distribution was recorded after 1000 drops struck the disdrometer with a size resolution of 0.1 mm (minimum drop size 0.2 mm). The data consisted of 15-min records of these drop size distributions, rain rate, and calculated reflectivity factor and differential reflectivity. Data set information and data for the STORM-FEST period are available through the CODIAC system.


#### **2.1.3 Research Networks**

##### *NCAR Portable Automated Mesonet (PAM II) Data*

Forty-five NCAR second generation PAM II stations were deployed in the STORM-FEST domain (see Fig. 2.9). Nine of these stations were deployed in the STORM-FEST boundary layer network near Seneca Kansas (station spacing approx. 5 km) with the majority of the remaining 36 stations deployed throughout Missouri (station spacing approx. 100 km). In addition, a PAM II station was collocated with an ASOS station in Topeka, Kansas. The PAM stations measured 5-min averages of temperature, relative humidity, barometric pressure, 10-m wind speed and direction (u,v components), and rainfall totals. One-minute resolution data was collected at the Boundary Layer network and at Topeka. All data were stored locally on-site and transmitted via GOES satellite every 5-min to receiving stations at NCAR (Boulder, CO) and at the STORM-FEST Operations Center at Richards-Gebaur AFB for real-time display quality assurance, and archiving.



**Figure 2.8** Location of the USDA/ARS Little Washita Basin Precipitation Network.



**Figure 2.9** Location of the PAM Surface Mesonet Sites.

All data are available from NCAR/Research Data Program (RDP). Information regarding data access is available through the CODIAC system.

#### *NCAR ASTER Facility Data*

The NCAR Atmosphere-Surface Turbulent Exchange Research (ASTER) Facility collected measurements during STORM-FEST as part of the Boundary Layer Network near Seneca, Kansas. ASTER provided tower-based measurements of turbulent eddy correlation fluxes of momentum, sensible heat and water vapor as well as vertical profiles (10-m, 5 levels) of wind speed and direction, temperature, and water vapor. Additional ASTER measurements included barometric pressure, precipitation, net radiation and soil fluxes of temperature, moisture and heat (i.e., surface energy balance). ASTER collected 1-min time resolution data on-site which was processed, quality assured, and archived by NCAR. All data are available from NCAR/Research Data Program (RDP). Information regarding data access is available through the CODIAC system.

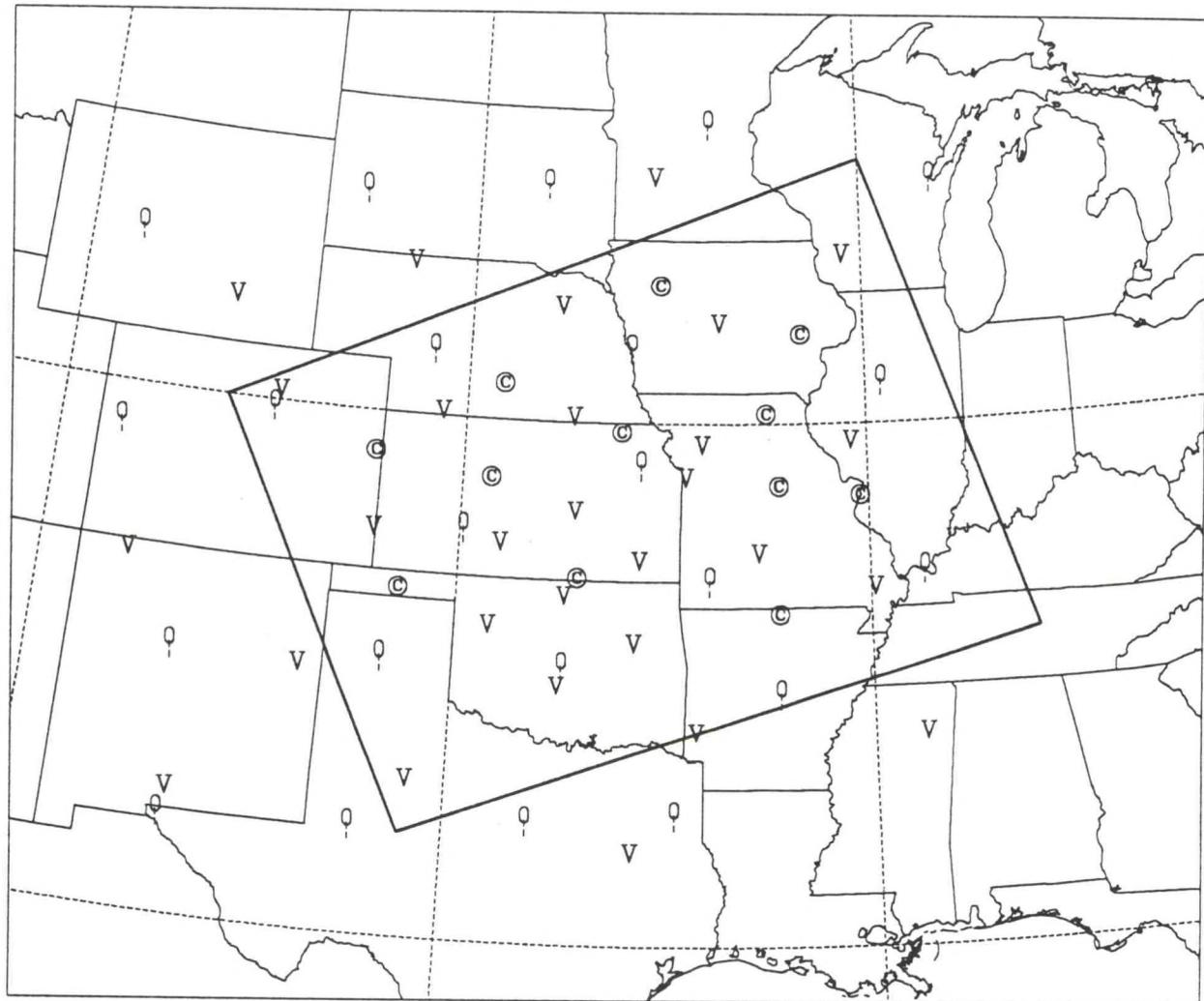
#### *Misc. Observation Network Data*

Numerous other small private and commercial meteorological networks existed in the STORM-FEST region. These include data collected by local agricultural extension stations, power and utility plants, and others. Arrangements are underway to obtain these data and other meteorological data routinely collected by other federal and state networks (i.e., Soil Conservation Services, the Army Corps of Engineers, US Geological Survey, DoD missile sites, etc.). Data set information and data for the STORM-FEST period will be available through the CODIAC system.

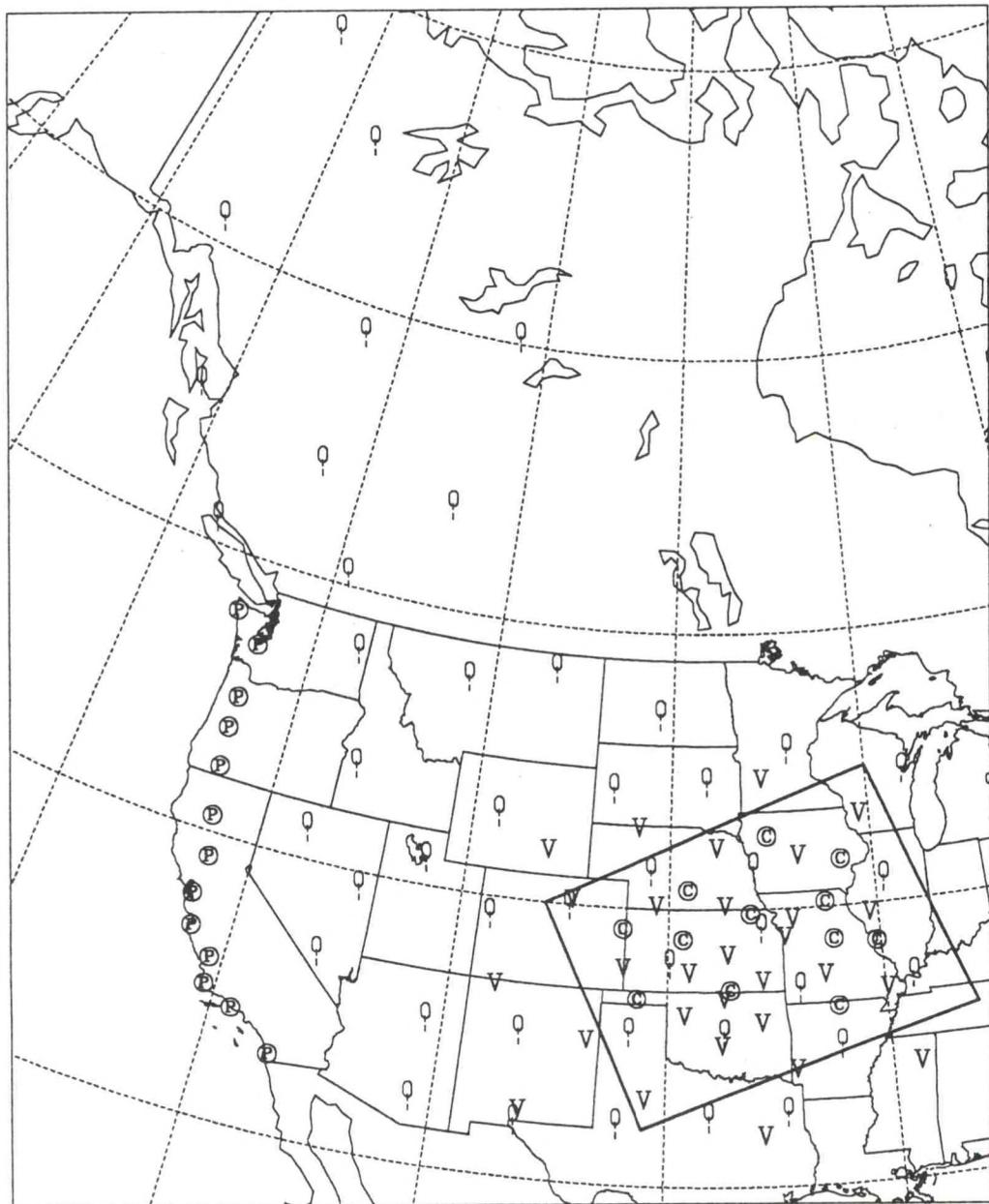
#### **2.1.4 Composite Surface Data Sets**

The STORM-FEST Data Management Center (SFDMC) created three contiguous U.S. composite surface data sets consisting of STORM-FEST data collected from the national, regional, and special research network data sets (i.e., ASOS, AWOS, NWS/FAA, FSL, ICN, HPCN, PAM, and USGS). The following composite data sets were created: (1) 5-min composite from data collected at 5-min or less resolution sites (Approx. 120 total sites); (2) 1-h composite from data collected at 1-h resolution sites (approx 720 sites); and (3) hourly and 15-min precipitation composites from all networks measuring precipitation (approx 2700 sites). All individual data sets

were converted to a common internal format using standard parameters. Quality assurance was performed flagging data according to a MAPS comparison and station "buddy" checks. Final archival was performed using a conversion to E-BUFR format. Data set information and data for the STORM-FEST period are available through the CODIAC system.


## 2.2 Upper Air Data

Upper air soundings for STORM-FEST were provided by conventional systems (NWS, Military, AES) and research (CLASS, dropwindsonde and Profiler systems). Figures 2.10a and b shows the sounding and profiler sites for the inner and total STORM-FEST domains respectively. A complete listing of all upper air site locations are provided in Appendix A.


### 2.2.1 Surface-based Rawinsonde

#### *National Weather Service (NWS) Rawinsonde Data*

Standard and special soundings were taken for STORM-FEST from 33 NWS stations in the western and central United States using the NWS MicroART system. In addition to standard 12-h observations, special 3-h and 6-h soundings were taken in the STORM-FEST domain as requested by STORM-FEST Operations. The radiosondes were radio-directionally tracked from each sounding station and 1-sec thermodynamic data from the radiosonde were transmitted directly to the station for sounding computation. Special soundings taken for STORM-FEST were terminated at 100 mb. A total of approx. 5600 NWS soundings were taken during the STORM-FEST period. Archived data consists of 6-second vertical resolution (MicroART) data and mandatory/significant level data of pressure, temperature, relative humidity, wind speed and direction. Mandatory/Significant level data were archived into NCDC's TD-6201 national upper air data set. Following STORM-FEST, the 6-sec vertical resolution data were converted from MicroART format to NCAR CLASS format by the SFDMC. Data set information and data for the STORM-FEST period are available through the CODIAC system.



**Figure 2.10a** Location of the Inner Domain Sounding and Profiler Sites (◊-NWS sites, ©-Class sites, V-Profiler sites.



**Figure 2.10b** Location of the STORM-FEST Sounding and Profiler Sites (Q -NWS and AES sites, C-Class sites, V-Profiler sites, P -Picket Fence).

### *Canadian AES Rawinsonde Data*

Standard and special soundings were taken from 9 Canadian Atmospheric Environment Service (AES) stations in western Canada. In addition to standard 12-h routine operational soundings, selected stations provided 6-h special soundings as requested by the STORM-FEST Operations Center. The radiosondes were radio-directionally tracked and thermodynamic data from the radiosonde were transmitted directly to the station for sounding computation. These soundings consisted of 10-sec vertical resolution (where available) and mandatory/significant levels of pressure, temperature, relative humidity, wind speed and direction. Mandatory/significant level data were archived at the Canadian Climate Center in cycle format. Special soundings taken for STORM-FEST were terminated at 100 mb. A total of approx. 1500 AES soundings were taken during the STORM-FEST period. Following STORM-FEST, the 10-sec vertical resolution data (where available) and cycle format were converted to NCAR CLASS format by the SFDMC. Data set information and data for the STORM-FEST period are available through the CODIAC system.

### *NCAR and NOAA/NSSL CLASS Data*

Twelve (12) special fixed site Cross-chain Loran Atmospheric Sounding System (CLASS) rawinsonde stations were operated by NCAR (8) and NSSL (4) and deployed to supplement the existing NWS rawinsonde and NOAA Profiler sites in the STORM-FEST inner domain. Soundings were taken as directed by STORM-FEST Operations (from a 12-h to 3-h interval schedule). CLASS used the LORAN navigational aid network to determine radiosonde position and calculate wind speed and direction. Thermodynamic parameters (pressure, temperature, and relative humidity) were transmitted directly from the radiosonde to the CLASS site. Complete soundings were terminated at 100 mb. A total of approx. 1200 CLASS soundings were taken during the STORM-FEST period. Data consists of 10-second vertical level resolution of pressure, temperature, relative humidity wind speed and direction. Following STORM-FEST, all CLASS sounding data were processed, quality checked, and archived by NCAR. All data are available from NCAR/Research Data Program (RDP). Information regarding data access are available through the CODIAC system.

*U.S. Military Rawinsonde Data*

Standard and special scheduled U.S. Military soundings were taken from selected Military installations to support STORM-FEST activities. These soundings were taken using a variety of rawinsonde systems on various schedules. Special soundings taken for STORM-FEST were terminated at 100 mb, except for soundings taken to support military activities. A total of approximately 250 soundings were taken during the STORM-FEST period. Data consists of 100-m vertical resolution (where available) and mandatory/significant levels of pressure, temperature, relative humidity, wind speed and direction. Following STORM-FEST, the highest vertical resolution data available was converted to NCAR CLASS format by the SFDMC. Data set information and data for the STORM-FEST period are available through the CODIAC system.

*Naval Postgraduate School "Picket Fence" Rawinsonde Data*

The Naval Postgraduate School (NPGS) at Monterey, California, coordinated a network of 7 special rawinsonde stations in addition west coast NWS, military, and AES stations. This higher density "Picket Fence" network consisted of a total of 15 stations along the west coast that extended from California to British Columbia with a station spacing of approx. 200 km. The purpose of the "Picket Fence" network was to provide observations of the environmental flow conditions upstream of the STORM-FEST domain. Soundings were taken as directed by NPGS personnel in coordination with STORM-FEST Operations (on a 3-h interval schedule for 4 IOPs of 24- to 48-h duration). The special Picket Fence sounding sites used the OMEGA navigational aid network to determine radiosonde position and calculate wind speed and direction. Thermodynamic parameters (pressure, temperature, and relative humidity) were transmitted directly from the radiosonde to individual sites. Complete soundings were terminated at 100 mb. A total of approximately 1000 Picket Fence soundings were taken during the STORM-FEST period. Data consists of 10-second vertical level resolution of pressure, temperature, relative humidity, wind speed and direction. Following STORM-FEST, all Picket Fence sounding data were converted from FGGE format to NCAR CLASS format by the SFDMC. Data set information and data for the STORM-FEST period are available through the CODIAC system.

## 2.2.2 Aircraft-Based Dropwindsonde

### *NCAR Lightweight Loran Digital Dropwindsonde (L2D2) Data*

Approximately 96 NCAR L2D2 dropwindsondes were successfully deployed from research aircraft during STORM-FEST to increase data sampling along the aircraft flight tracks. The dropsondes were released primarily in the STORM-FEST inner domain from research aircraft (NOAA P-3 and NCAR King Air) equipped with telemetry receiving and data processing equipment. The L2D2 utilized the LORAN navigational aid network for tracking and computing winds, and transmitted the thermodynamic data (pressure, temperature, relative humidity) back to the aircraft. Data consisted of 10-second time vertical level resolution of pressure, temperature, relative humidity wind speed and direction. Following STORM-FEST, all L2D2 dropsonde data were processed, quality checked, and archived by NCAR. All data are available from NCAR/Research Data Program (RDP). Information regarding data access is available through the CODIAC system.

### *U.S. Military Dropwindsonde Data*

The U.S. Air Force deployed approximately 200 dropsondes during STORM-FEST over the northeast Pacific Ocean in support of upstream upper air soundings for model initialization and air mass/frontal transition studies. The military dropwindsondes were released from C-130 aircraft at approximately 30,000 feet altitude, providing pressure, temperature, relative humidity, and wind speed and direction data. Mandatory/significant level data were relayed to NMC via weather circuit transmission for possible inclusion into numerical weather prediction models and real-time operational products. Following STORM-FEST, highest vertical resolution data (i.e., 10-sec) were converted into NCAR CLASS format by the SFDMC for conversion into NCAR CLASS format. Data set information and data for the STORM-FEST period are available through the CODIAC system.

### 2.2.3 Profilers

#### *NOAA Demonstration Profiler Network Data*

During STORM-FEST, the NOAA Demonstration Profiler network consisted of twenty six (26) 403 MHz profilers in and near the STORM-FEST domain. The remainder of the network was being installed. The data consists of 6-minute in 1-hr time resolution vertical profiles of winds and temperature from 0.5 to 14 km altitude. These data were collected, processed, quality checked by NOAA. A subset of hourly profiles were transmitted via UNIDATA to research scientists. Final archival of 6-min and hrly data was performed by NCDC. Data set information and data for the STORM-FEST period are available through the CODIAC system.

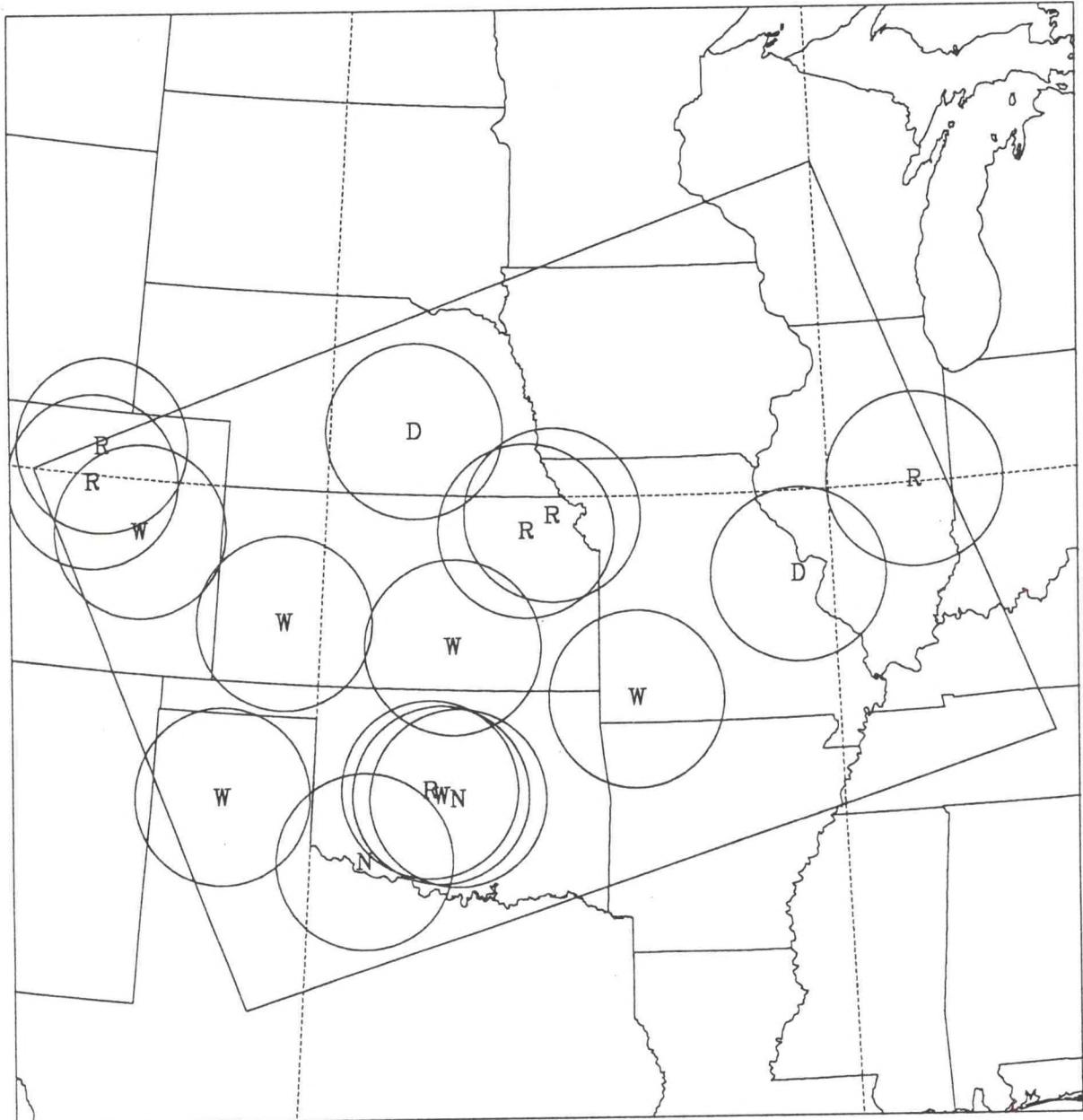
#### *NOAA/WPL Boundary Layer Network Research Profiler Data*

NOAA/Wave Propagation Laboratory (WPL) operated and maintained five Boundary Layer Profilers (915 MHz) in the Boundary Layer Network during STORM-FEST. These lower tropospheric Profilers, equipped with RASS, provided vertical profiles of winds and temperatures at 0.5-h intervals. Winds were measured at 100 m resolution gates from 0.2 to 3.1 km, and at 400 m resolution from 0.4 to 5 km. Temperatures from the RASS were measured up to about 2 km. The data were processed, quality checked, and archived by NOAA/WPL. Data set information and data for the STORM-FEST period are available through the CODIAC system.

#### *University of Wisconsin HIS Data*

The University of Wisconsin operated and maintained a High-resolution Interferometer Sounder (HIS) as part of the STORM-FEST Boundary Layer Network near Seneca, Kansas. The HIS was a vertically viewing instrument providing vertical profiles of temperature and moisture every 12 minutes from calibrated infrared downwelling radiance spectra. The retrieval of temperature/moisture profiles worked well under cloud-free or high to mid-level cloud conditions, providing good spatial/temporal data of atmospheric structure. The HIS operated nearly continuously, except during periods of rain and snow, and for daily calibrations (centered near 0000 UTC). All data are available from The University of Wisconsin Space Science and Engineering Center. Information regarding data access is available through the CODIAC system.

## 2.2.4 Composite Upper Air Data Set


The STORM-FEST Data Management Center (SFDMC) created a composite upper air data set consisting of STORM-FEST data collected from all surface-based rawinsonde and aircraft-based dropwindsonde data sets (i.e., NWS, AES, CLASS, U.S. Military rawinsonde, Picket Fence, L2D2, and USAF dropwindsondes). All individual data sets were converted to NCAR CLASS format and interpolated to standard 10-mb pressure levels. A final quality assurance (and subsequent flagging of data) was performed by the SFDMC. Data set information and data for the STORM-FEST period are available through the CODIAC system.

## 2.3 Radar Data

Radar data were obtained from national, regional, and research networks (see Fig. 2.11) comprising the STORM-FEST domain. (A complete listing of the site locations is given in Appendix A.)

### *WSR-88D Radar Data*

Operational ten-cm wavelength Doppler weather radar data (NEXRAD WSR-88D) were collected from four sites during STORM-FEST (Twin Lakes, OK; Frederick, OK; Norman, OK; and St. Louis, MO). The site at St. Louis began collecting data on 4 March and no Archive II data were recorded. Data recording was sparse from the Oklahoma area radars, restricted to selected periods when precipitation occurred in the area (see daily data collection grids). The Level II Archive data consist of radar reflectivity and velocity spectra for each full volume scan (i.e., every 5-10 minutes depending upon mode). These data were recorded on 8mm data tapes and archived at NOAA/OSF in Norman, OK. Copies of these tapes were provided to the STORM-FEST Data Management Center for distribution. Display software is being developed from NOAA/OSF and NOAA/NSSL in Norman, OK. Data set information and data for the STORM-FEST period are available through the CODIAC system.



**Figure 2.11** Location of the Research and Operational Radars (N-NEXRAD, W-Digitized Full Volume WSR-57 [RADAP-II], D-Digitized WSR-57, R-Research).

### *NWS WSR-57 Digitized Radar (St. Louis, Grand Island) Data*

Two portable digitizers were interfaced to existing 10-cm non-coherent wavelength WSR-57 radars at St. Louis and Grand Island during STORM-FEST. The digitized PPI and volume scan reflectivity data were recorded on 9-track tapes and archived by SFDMC. The recorders were activated only during times requested by the STORM-FEST Operations Center (See the daily data collection grids). Software to read and display these data are available from NOAA/NSSL. Data set information and data for the STORM-FEST period are available through the CODIAC system.

### *NWS Manually Digitized Radar Data*

National Weather Service WSR-57 radar data (reflectivity) for the United States were routinely manually digitized by the National Meteorological Center and distributed over the weather data communications networks in real-time. These data were routinely ingested, archived, and available from NCAR/SCD and NOAA/NCDC. Information regarding data access is available through the CODIAC system.

### *NWS Radar PPI Scan Films*

The NWS routinely filmed Plan Position Indicator (PPI) displays from 59 NWS WSR-57 radar scopes during periods of significant weather (40-sec to 5-min image frequency). Photographic frames of the PPI scope provided the direction and distance of echoes, which included individual cells or areas of cells from the radar. From a series of frames, the intensity and direction of movement can be determined. A junction or coded lamp system displayed pertinent information about the radar function settings, range, clock, etc. The data are available from NCDC on 16- and 35-millimeter microfilm. Glossy prints from these microfilms are also available from NCDC. Information regarding data access is available through the CODIAC system.

### *NWS Radar Summary Charts (Microfiche)*

Hourly WSR-57 radar summary (PPI composite) charts were prepared by the National Weather Service (NWS), National Meteorological Center (NMC) and archived on 35-mm

microfilm by the National Climatic Data Center (NCDC). The charts contain analyzed areas, lines, and cells derived by radar reflectivity that include the base, tops, intensity, and movement of these cloud formations. Precipitation types and intensity change are also depicted. In addition, hourly and special radar weather observations were recorded on daily MF7-60 forms which provided information on character, type, and intensity of precipitation, echo heights and movement, and pertinent remarks. These forms are microfiched monthly and available from NCDC. Information regarding data access is available through the CODIAC system.

#### *NCAR Research Doppler Radar Data*

The NCAR CP-3 and CP-4 C band 5-cm wavelength research Doppler radars were operated in a dual Doppler coordinated mode in northeast Kansas during STORM-FEST. Approximately 228 and 250 hours of data were recorded for CP-3 and CP-4, respectively. Measurements included radar reflectivity, velocity, spectral width (WS), normalized coherent power (NCP), signal noise ratio (SN), and received power (DM). The reflectivity and velocity data from CP-4 was displayed in real-time for operations on the NCAR/Research Data Program (RDP)'s ZEB workstations in the Field Operations Centers in Kansas City and Boulder. This lower resolution CP-4 data was also archived on ZEB and is available in ZEB Format. Following the field data collection, NCAR/RDP cataloged, processed, quality controlled, and archived the data. Data are available on the NCAR mass store in field format with software available to convert these data to Universal Format. High resolution scan catalogs produced during the processing are also available from NCAR/RDP. Information regarding data access is available through the CODIAC system.

#### *NSSL Cimarron Radar Data*

The 10-cm wavelength Cimarron Doppler radar located at NOAA/NSSL operated in dual-Doppler coordination with the Twin Lakes and Norman OSF WSR-88D radars when precipitation occurred in the Oklahoma area during STORM-FEST (see daily data collection grids). Approximately 26 hours of data were recorded during STORM-FEST. Reflectivity and velocity spectra data were recorded on 9-track tapes in real-time. The data were then quality controlled by NOAA/NSSL and copied to 8mm data tapes. Copies of these tapes were provided to the SFDMC for archival and distribution. Copies of the volume scan catalog are also available. Data set information and data for the STORM-FEST period are available through the CODIAC system.

### *Mile High (Denver) Radar Data*

The Mile High (Denver) 10-cm wavelength Doppler radar operated almost every day during STORM-FEST in support of the FAA Terminal Doppler Weather Radar (TDWR) Program. Approximately 422 hours of data were recorded during STORM-FEST. The radar primarily operated from 1600 to 0000 UTC daily (see daily data collection grids), in TDWR scan mode (PPI), collecting a large fraction of data in periods of clear weather. The data (i.e., "raw" reflectivity and velocity) were archived on 8mm data tapes and sent to NCAR/Research Data Program (RDP). The data were then processed and archived on the NCAR Mass Store by RDP. Information regarding data access is available through the CODIAC system.

### *Illinois HOT Radar data*

The University of Illinois HOT 5-cm wavelength Doppler Radar was located at the Urbana-Champaign Airport and operated by the Illinois State Water Survey during STORM-FEST. The radar was activated under the direction of the STORM-FEST Operations Director during designated IOPs. The data were recorded on 9-track tapes. All data are available from The University of Illinois. Information regarding data access is available through the CODIAC system.

### *NWS RADAP II Data*

Five 10-cm non-coherent wavelength NWS WSR-57 radars (Garden City, KS; Monett, MO; Amarillo, TX; Limon, CO; Oklahoma City, OK) equipped with a second generation RAdar DAta Processor (RADAP II) and an interfaced Interactive Color Radar Display (ICRAD) system recorded radar reflectivity data during the STORM-FEST period. RADAP II automatically controlled radar operation and acquired approximate 15-minute tilt sequence volume scan data of low level PPI and volumetric reflectivity. These data (at a resolution of 2 deg by 1 nautical mile range from 10 to 125 nautical miles) consists of both low level PPI and volumetric reflectivity converted to 15 RADAP levels which corresponds to approximate rainfall rates. Raw data were collected on floppy disks and transferred to the NWS Techniques Development Laboratory (TDL) for processing and quality control. Final archival and availability of the RADAP II data was performed by NCDC. Information regarding data access is available through the CODIAC system.

### *WSI NOWRAD Radar Composites*

WSI provided Planned Position Indicator (PPI) reflectivity data from individual NWS radars and produced regional NWS radar composites (NOWRAD) every 15-minutes during STORM-FEST. These high resolution regional radar composite images (8-bit) were ingested by the National Weather Service VDUC system (McIDAS) and archived by the National Severe Storms Forecast Center (NSSFC), Kansas City. A fixed regional sector (STORM-FEST Inner Domain) and a floater sector were downloaded to PC-McIDAS in real-time during STORM-FEST and archived by the SFDMC. Data set information and data for the STORM-FEST period are available through the CODIAC system.

### *NOAA/AOC WP-3D Airborne Radar Data*

The NOAA/Aircraft Operations Center (AOC) WP-3D aircraft carried a 5-cm and a 3-cm wavelength radar during STORM-FEST: the horizontally scanning lower fuselage (LF) radar (5 cm), which measured reflectivity; and the vertically scanning tail (TA) radar (3 cm) which measured reflectivity and velocity. The LF radar was non-coherent and the TA radar was Doppler. Both radars were three axis stabilized, with the TA antenna nominally directed perpendicular to the aircraft ground track. Both antennas covered the full 360 deg of azimuth. Data were recorded on 9-track, 1600 bpi field tapes in raw "P-3" standard format. Software exists to read and display "raw" P-3 format and convert this format into Universal Format. All P-3 radar data were archived by the SFDMC. Data set information and data for the STORM-FEST period are available through the CODIAC system.

## **2.4 Satellite Data**

### *NOAA GOES-7 VIS/IR/MSI Imagery*

Most of the satellite data archived during STORM-FEST was obtained from the Geostationary Operational Environmental Satellite (GOES-7) positioned near 108 degrees longitude. The primary instrumentation on GOES-7 was the Visible and Infrared Spin-Scan Radiometer (VISSR) which produced both day and night Infrared (IR) [10.5 to 12.5 microns] and day visible (VIS) [0.5 to 0.7 microns] radiometric images of the full disk at 30-min intervals. In addition, the VISSR Atmospheric Sounder (VAS) sensor had four IR detectors and 12 narrow band filters that

produced multi-spectral data [from 14.73 to 3.95 microns]. Multi-spectral imagery (MSI) was produced at 3-hour intervals (1-hr during 0030-0230 and 1230-1430 UTC). Although the scheduling of these bands varied, typically band 10 [6.7 microns] is widely used to depict water vapor distribution. The GOES-7 nominal VAS schedule is shown in Appendix C. This schedule during STORM-FEST provides a 30-min general listing of available image bands and Dwell Soundings (DS) associated with each Processor Data Load (PDL) and corresponding time length.

Image frequency was increased by placing the satellite into Rapid Interval Scan Operations Plan (RISOP) mode or "Rapid Scan". Under RISOP, up to 12 VIS/IR/MSI images per hour were obtained depending on location of interest. Appendix C describes the VAS schedule when the GOES satellite was in RISOP mode. Note that during RISOP, normal scheduled VAS operations were suspended or changed. Fourteen RISOP periods were called during STORM-FEST (see daily data inventories for specific times).

The primary source for GOES-7 imagery data was the IBM Mainframe McIDAS system located at the National Severe Storms Forecast Center (NSSFC) in Kansas City, MO. The imagery (Area files) were downloaded to PC-McIDAS in real-time and archived by the STORM-FEST Data Management Center. These data consist of 1-km resolution VIS imagery of the STORM-FEST inner domain; 8-km resolution MSI imagery of the northern hemisphere; and hourly VAS precipitable water imagery. All GOES-7 data were archived by NOAA/NESDIS at the University of Wisconsin Space Science and Engineering Center (SSEC) and are available in McIDAS and GARS format. Data set information and data for the STORM-FEST period are available through the CODIAC system.

#### *NOAA GOES-7 Visible Image Loop Video Tapes*

Florida State University (FSU) prepared a set of three Video Cassette Recorder (VCR) tapes containing loops of 8 km resolution GOES-7 imagery (visible, infrared, and MSI channel 10, respectively) over the central United States for the STORM-FEST period. The tapes were recorded at standard speed (2-hour length) and contain daily loops of 1-h interval imagery. The tapes were prepared using 8-bit imagery from FSU's GOES direct readout groundstation PC-based ingestor. Since the FSU system relied on navigation transmitted from GOES-7, some navigational errors may be evident on these tapes. The video provides a browse capability in selection of post-

research case studies, and should not be used in quantitative image studies. Copies of these tapes were archived and available from the SFDMC. Information regarding tapes for the STORM-FEST period are available through the CODIAC system.

#### *NOAA GOES-7 VAS Data/Derived Products*

The GOES-7 VISSR Atmospheric Sensor (VAS) capability provided IR radiance observations at 12 wavelengths between 3.9 and 14.7 micrometers as well as two imaging modes (6.9 to 13.8 km resolution) and a sounding mode (13.8 km resolution).

Meteorological parameters derived from VAS (for clear and partly cloudy areas) included: cloud cover, earth/cloud temperatures, cloud type, cloud motion derived winds, stereo derived cloud-top heights, water vapor fields, temperature fields, improved surface temperatures, and temperature and moisture profiles (Dwell Soundings). The interval and number of dwell soundings and derived products depended upon whether the satellite was in normal operation or RISOP mode. VAS data were routinely archived and available from NOAA/NESDIS and the University of Wisconsin's Space Science Engineering Center (SSEC). Information regarding data access is available through the CODIAC system.

#### *NOAA AVHRR Imagery*

Two NOAA series polar orbiting satellites (NOAA-11 and NOAA-12) carried the Advanced Very High Resolution Radiometer (AVHRR) sensor during STORM-FEST. AVHRR is a cross-track scanning system with five spectral channels in the visible, near-infrared, and infrared wavelength regions [0.58 to 12.50 microns]. The normal operating mode of the satellites was continuous High Resolution Picture Transmission (HRPT) to earth, where the data were recorded by a network of ground stations. For STORM-FEST, AVHRR data included 1-km resolution HRPT or LAC (Local Area Coverage) and 4-km resolution GAC (Global Area Coverage) resolution imagery (1600 km swath) during subsequent sunsynchronous morning/evening ascending and descending passes (up to 4 passes daily) over or near the STORM-FEST region. NOAA/NESDIS routinely archived AVHRR data during STORM-FEST. AVHRR data are available from NOAA/NESDIS and the University of Colorado (Western U.S. only). A listing of the HRPT scenes (satellite overpasses) during STORM-FEST is available through NOAA/NESDIS and CODIAC. Data set information and certain data for the STORM-FEST period are available through the CODIAC system.

### *NOAA TOVS System Data*

Two NOAA series polar orbiting satellites (NOAA-11 and NOAA-12) carried the microwave TIROS Operational Vertical Sounder (TOVS) system during STORM-FEST. The TOVS system consisted of four separate sensors: (1) High Resolution Infrared Radiation Sounder (HIRS/2), which measured incident radiation primarily in the infrared region of the spectrum; (2) Microwave Sounding Unit (MSU), a passive scanning microwave spectrometer with 4 channels (5.5 micron region); (3) Stratospheric Sounding Unit (SSU), a step-scanned far-infrared spectrometer with three channels (15 micron region); and (4) Solar Backscattered Ultraviolet system (SBUV/2) which maps total ozone concentrations and vertical ozone distributions. Data were collected (1600 km swath) during subsequent sunsynchronous morning/evening ascending and descending passes (up to 4 passes daily) over or near the STORM-FEST region by NOAA/NESDIS. A listing of the satellite overpasses during STORM-FEST is available through NOAA/NESDIS and CODIAC. Information regarding data access is available through the CODIAC system.

### *DMSP SSM/I Data and Imagery*

The USAF Defense Meteorological Satellite Program (DMSP) is a system of three near polar orbiting satellites (F8, F9, and F10) that provided global microwave data from the Special Sensor Microwave Imager (SSM/I). The SSM/I sensor provided water vapor measurements (1400 km swath) at three frequencies (19.35, 37.0, and 85.5 GHz). Two satellites (F8, F9) provided sun-synchronous SSM/I data primarily during dawn/dusk (F8) and noon/midnight (F9) ascending and descending passes (up to 4 passes total daily) over or near the STORM-FEST region. Note that no 85.5 GHz data were available from F8. Global SSM/I data and derived products were processed by NASA's WetNET Program. A subset of these global data (archived in PC-McIDAS format) for the STORM-FEST region was extracted and is available from NASA/MSFC following final WETnet processing. Information regarding data access is available through the CODIAC system.

## 2.5 Aircraft Data

### *NCAR King Air Aircraft Data*

The NCAR/Research Aviation Facility operated a Beechcraft King Air Super 200 twin engine turboprop (maximum altitude 35 kft.), based at Richards-Gebaur AFB near Kansas City, MO. Thirty five research missions were flown during STORM-FEST from 03 February through 12 March, many in coordination with the University of Wyoming King Air. The King Air 1-second resolution data consisted of standard housekeeping parameters (time, position, performance); state parameters (fast response temperature and moisture, mean and turbulent components of air motion); and various microphysical measurements (cloud and precipitation particle spectra from four PMS probes, liquid water content from JW and King LWC probes). In addition for browse capability, the complete documentation and video tapes (forward & downward looking cameras) are available from the SFDMC. Data set information and data for the STORM-FEST period are available through the CODIAC system.

### *University of Wyoming King Air Aircraft Data*

The University of Wyoming Department of Atmospheric Science operated a Beechcraft King Air Super 200 twin engine turboprop (maximum altitude 35 kft.), based at Richards-Gebaur AFB near Kansas City, MO. Seventeen research flights were flown during STORM-FEST from 03 February through 11 March, many in coordination with the NCAR King Air. The King Air 1-sec resolution data consisted of standard housekeeping parameters (time, position, performance); state parameters (fast response temperature and moisture, mean and turbulent components of air motion); and various microphysical measurements (cloud and precipitation particle spectra from four PMS probes, liquid water content from JW and King LWC probes). Data set information and data for the STORM-FEST period are available through the CODIAC system.

### *NASA ER-2 Aircraft Data*

NASA/Ames Research Center operated a Lockheed ER-2 high altitude (stratospheric) reconnaissance jet (maximum altitude 65 kft.), flown by a single pilot, and based at Houston, Texas. Nine research flights were flown during STORM-FEST from 14 February through 14 March. The ER-2 flew the following instruments packages: Millimeter Imaging Radiometer

(MIR), Advanced Microwave Precipitation Radiometer (AMPR), Lightning Instrument Package (LIP), the High-resolution Interferometer Sounder (HIS), the Microwave Temperature Sounder (MTS), and the Wildfire Spectrometer (WILDFIRE). Additional details concerning ER-2 instrumentation are provided in Appendix B. All data are available from NASA/Marshall Space Flight Center. Information regarding data access is available through the CODIAC system.

#### *NOAA/AOC WP-3D Aircraft Data*

NOAA/Aircraft Operations Center (AOC) operated a Lockheed Orion WP-3D four engine turboprop (maximum altitude approximately 22 kft.), which was based at Richards-Gebaur AFB near Kansas City, MO. Nine research flights were flown during STORM-FEST from 05 February through 10 March, many in coordination with the University of Washington C-131. The P-3 1-sec resolution data consisted of standard aircraft housekeeping parameters (time, position, performance); state parameters (temperature, moisture, winds); and various microphysical measurements (cloud and precipitation particle spectra from four PMS probes, liquid water content from a JW probe, small ice particles, particle data [Formvar replicator]). The P-3 also collected data from two airborne radars (a tail Doppler 3 cm and lower fuselage 5 cm). Data set information and data for the STORM-FEST period are available through the CODIAC system.

#### *University of Washington C-131 Aircraft Data*

The University of Washington, Department of Atmospheric Science operated a C-131 twin engine turboprop (maximum altitude approximately 20 kft.), based at Richards-Gebaur AFB near Kansas City, MO. Sixteen research flights were flown during STORM-FEST from 05 February through 12 March, many in coordination with the NOAA/AOC P-3. The C-131 1-sec resolution data consisted of standard housekeeping parameters (time, position, performance); state parameters (fast response temperature and moisture, mean and turbulent components of air motion); and various microphysical measurements (cloud and precipitation particle spectra from four PMS probes, liquid water content from JW and King LWC probes). Data set information and data for the STORM-FEST period are available through the CODIAC system.

### *ACARS Data*

Many commercial aircraft (over 2800) were equipped with the Aircraft Communication and Reporting System (ACARS) which reported temperature, wind speed and direction, and height derived from altimeter setting at approximately 7-minute time resolution. These data provided enhanced upper air reports to supplement soundings, and vertical profiles on aircraft descent and ascent in the vicinity of major airports. All reports were routinely archived by NOAA Forecast System Laboratory. Data set information and data for the STORM-FEST period are available through the CODIAC system.

## **2.6 Model Data**

Model data were collected in real-time during STORM-FEST for all the operational models. Table 2.3 lists the Models and supporting information such as format, source, data collection times and estimated total size of the archive. Daily files of model data were stored on the NCAR Mass Store and later sub-divided for data management purposes. The following describes each of the models in greater detail.

### *NMC Nested Grid Model (NGM)*

NMC ran the Regional Analysis and Forecast System (RAFS) NGM model every 12 hours (00 and 12 UTC) with up to 48 hour forecasts (6-h intervals) at a standard resolution of 80 km during STORM-FEST. Standard fields are available at 50-mb increments from the surface to 100 mb. The data cutoff for model runs was 2 hours, and the output format was ON84 (Office note 84). All NGM runs were recorded on the NMC History Tape during STORM-FEST and later archived on the NCAR Massstor. Information regarding data access is available through the CODIAC system.

### *NMC Limited Fine Mesh (LFM) Model*

NMC ran the LFM model every 12 hours (00 and 12 UTC) with up to 48 hour forecasts (12-h intervals) at a standard resolution of 191 km during STORM-FEST. The data cutoff for model runs was 1.5 hours, and the output format was ON84 (Office note 84). All LFM runs were recorded on the NMC History Tape during STORM-FEST and archived on the NCAR Mass Store. Information regarding data access is available through the CODIAC system.

**TABLE 2.3**

## Available Level IIIa Model Analyses Data Collected During STORM-FEST

| Model:       | Format:       | Source:      | Coverage:   | Est. Total Size (MB): |
|--------------|---------------|--------------|-------------|-----------------------|
| NGM:         | ON84          | History Tape | Full        | 150                   |
| LFM          | ON84          | History Tape | Full        | 100                   |
| MRF sigma    | ON85          | History Tape | Full        | 1000                  |
| MRF flux, A  | ON84/85, GRIB | History Tape | Full        | 100                   |
| MRF flux, C  | ON84/85, GRIB | History Tape | Full        | 280                   |
| MRF flux, D  | GRIB          | History Tape | 2/6-3/15    | 40                    |
| MRF forecast | ON85          | History Tape | Full        | 400                   |
| FNOC         | NEDN          | Tape         | Full        | 100                   |
| Early Eta    | GRIB          | FTP          | Full        | 600                   |
| Aviation Run | GRIB (old)    | FTP          | Full        | 900                   |
| Aviation Run | GRIB (new)    | FTP          | 2/13 - 3/15 | 330                   |
| MAPS         | GRIB          | FTP          | Full        | 100                   |
| PC Grids     | PC Grid       | FTP          | Full        | 180                   |
| Toss Lists   | ASCII         | FTP          | Full        | 40                    |

*NMC Medium Range Forecast (MRF) Model*

NMC ran the MRF model every 24 hours (00 UTC) with up to 240 hour forecasts (12-h intervals) at a standard resolution of 200 km during STORM-FEST. The output consisted of forecast, sigma, and three flux fields. The data cutoff for model runs was 6 hours, and the output format was ON84 and ON85 (Office note 84 and 85), as well as GRIB for the flux fields. All MRF runs were recorded on the NMC History Tape during STORM-FEST and archived on the NCAR Mass Store. Information regarding data access is available through the CODIAC system.

*U.S. Navy Fleet Numerical Oceanographic Center (FNOC) Model*

The U.S. Navy ran the FNOC model every 12 hours (00 and 12 UTC) with up to 48 hour forecasts (6-h intervals) at a standard resolution of 2.5 degrees lat/lon during STORM-FEST. The data consist of surface fields of pressure, temperature, vapor pressure, boundary layer u/v winds, and 9 upper level fields of heights, temperature, vapor pressure and u/v winds (1000, 925, 800, 700, 500, 400, 300, 250, and 200-mb) and total cloud cover. The FNOC output format was NEDN and all FNOC runs were recorded on a 9-track tape during STORM-FEST, with a copy archived by the SFDMC. Data set information and data for the STORM-FEST period are available through the CODIAC system.

*NMC Early Eta Model*

NMC ran the Early Eta model every 12 hours (00 and 12 UTC) with up to 48 hour forecasts (6-h intervals) at a standard resolution of 80 km during STORM-FEST. Standard fields are available at 38 levels to 100 mb. The data cutoff for model runs was approximately 1 hour, and the output format was GRIB. All Early Eta runs were electronically transferred to NCAR (via FTP) during STORM-FEST and archived on the NCAR Mass Store by the SFDMC. Information regarding data access is available through the CODIAC system.

### *Aviation Model*

NMC ran the Aviation model (T126) every 12 hours (00 and 12 UTC) with up to 48 hour forecasts (12-h intervals) at a standard resolution of approximately 100 km during STORM-FEST. Standard fields are available at 18 level from the surface to 100 mb (6 layers below 850-mb to preserve the PBL). The data cutoff for model runs was 2.75 hours, and the output format was GRIB. [NOTE- The new GRIB format was used from 13 February through 15 March]. All Aviation runs were electronically transferred to NCAR (via FTP) during STORM-FEST and archived on the NCAR Mass Store. Information regarding data access is available through the CODIAC system.

### *Mesoscale Analysis and Prediction System (MAPS) Model*

NMC ran the MAPS model every 6 hours (00, 06, 12 and 18 UTC) with up to 6 hour forecasts at standard resolution of approximately 60 km during STORM-FEST. Standard fields are available at 25 levels from the surface to 100 mb. The data cutoff for model runs was approximately 1 hour, and the output format was GRIB. A limited number of MAPS runs were electronically transferred to NCAR (via FTP) during STORM-FEST and archived on the NCAR Mass Store by the SFDMC. In addition, another version of MAPS was run by NOAA/Forecast Systems Laboratory (FSL). The SFDMC archived hourly interval MAPS surface analyses from FSL. Data set information and data for the STORM-FEST period are available through the CODIAC system.

### *NCAR Mesoscale Model (MM4)*

The NCAR/Pennsylvania State University Mesoscale Model (MM4) was used to develop research model forecasts up to 36 hour (1-h intervals) of 20 km resolution over the STORM-FEST domain. NCAR/MMM ran the MM4 model every 24 hours (12 UTC) and at 00 UTC as directed by the STORM-FEST Operations Director to support IOP forecasting. The data cutoff for model runs was approximately 1.5 hours, and the output format was custom NCAR MM4. All MM4 data were archived on the NCAR Mass Store by the NCAR/Mesoscale Microscale Meteorology (MMM) Division. Information regarding data access is available through the CODIAC system.

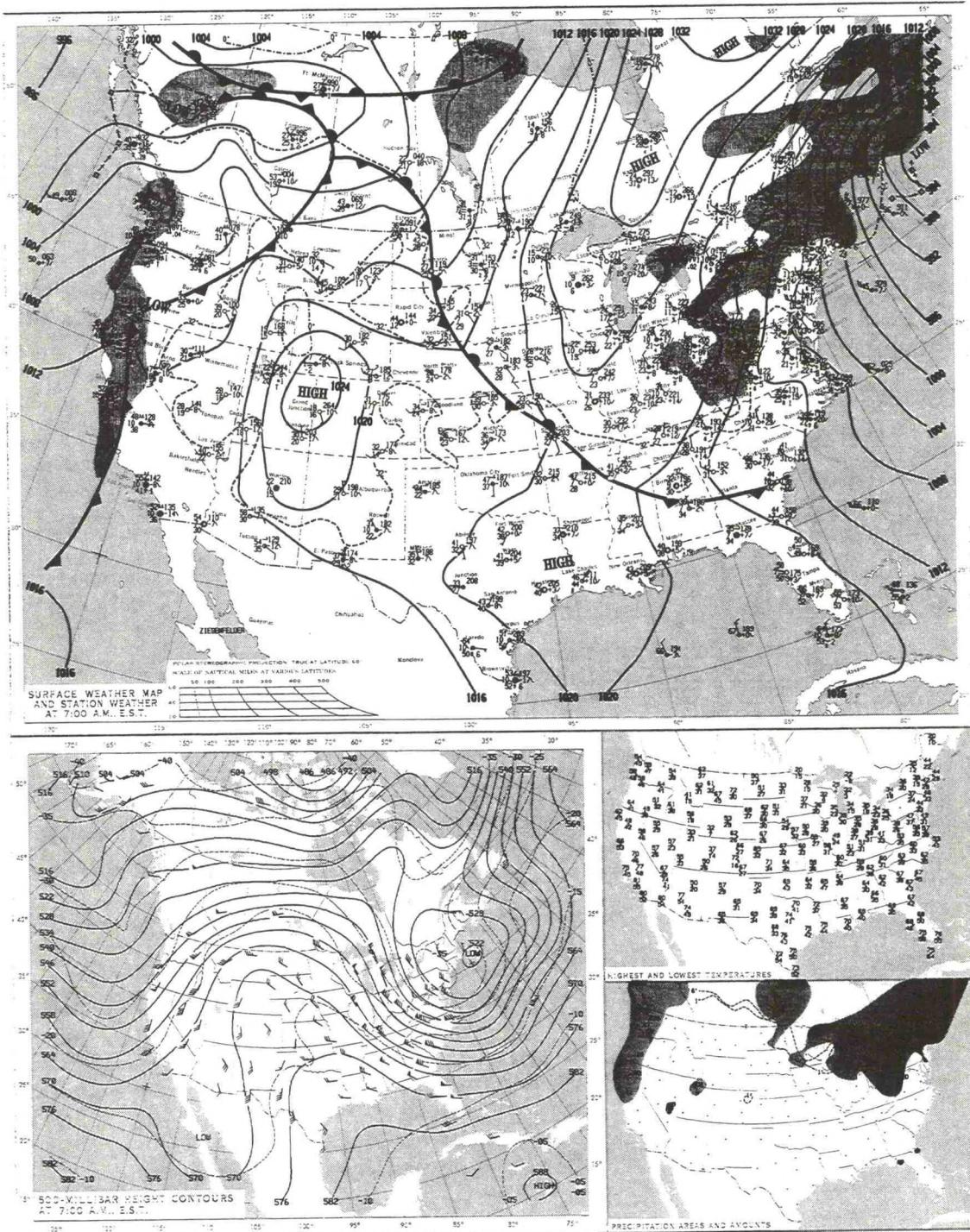


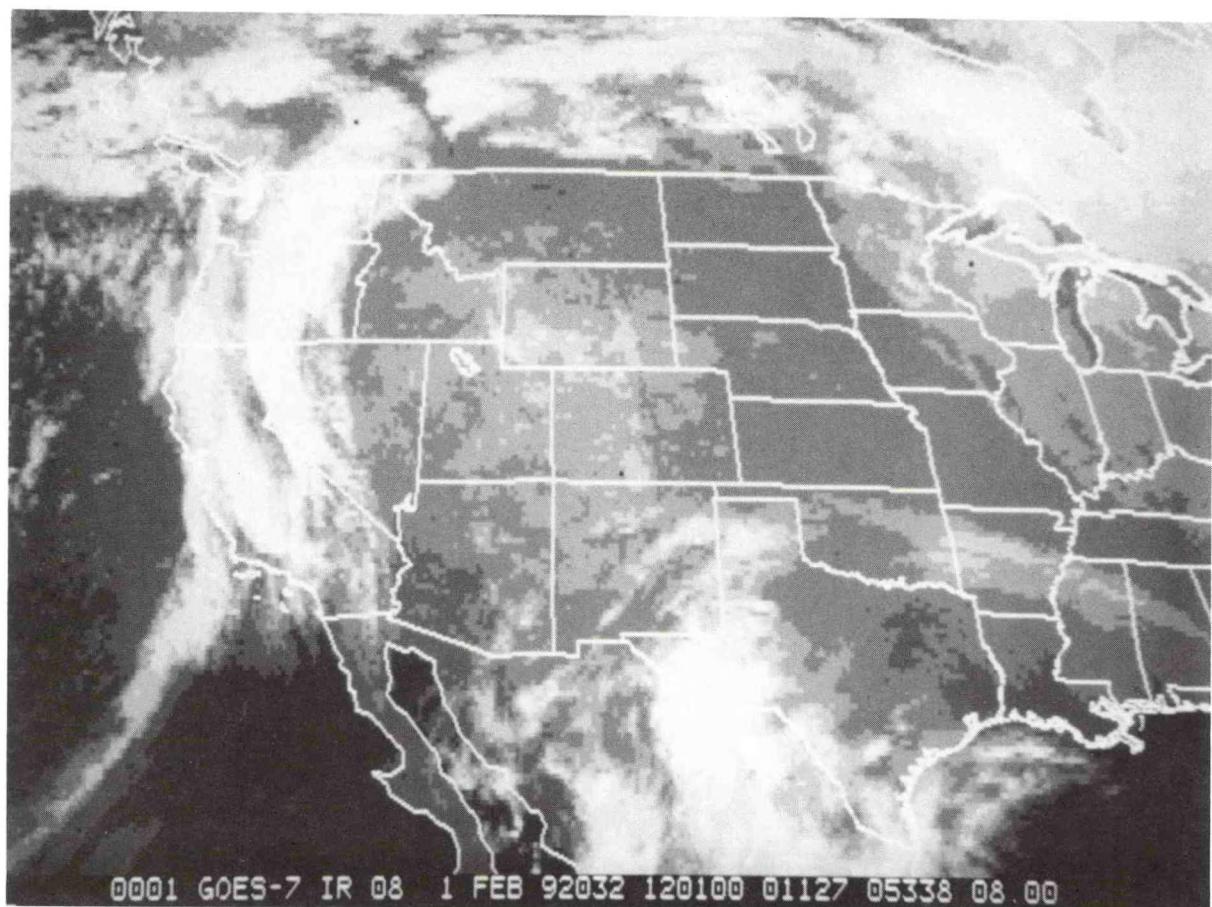
# **Daily Weather and Operations Summaries**

## 3.0 Daily Weather and Operations Summaries

This chapter summarizes the daily operations of the STORM-FEST experiment. A detailed description of the meteorological conditions (including a 1200 UTC corresponding GOES-7 8 km satellite image and NOAA's "Daily Weather Map" series, operational summary, and data collection grid are provided for each day of the experiment.

The data collection grids include "blocked" times when data for that respective platform was collected. For the case of networks, (e.g., NWS Inner) the number of stations which collected data for that time are denoted. Hatched areas represent times when IOPs were in progress. For surface systems, the number of stations which collected hourly data out of a possible total is shown. "Intermittent" indicates stations which missed 20% or more hourly observations during the day. Triangles represent NOAA Polar orbiting Satellite overpass times for the STORM-FEST Inner Domain, and when data was archived by NOAA/NESDIS.





**WEATHER SUMMARY****1 February 1992**

On this first day of STORM-FEST, the long wave ridge to the west of the STORM-FEST experimental area and the trough to the east dominated the weather, as it had over the past month. There was a weak stationary front extending from eastern Kansas through central Nebraska extending into the Dakotas. No precipitation or active weather was expected along the front. A cold front was located in western Montana, and was expected to move into the STORM-FEST domain on 2 February. Again, little or no precipitation was expected with the front.

The forecast progs indicated that by 0000 UTC, 3 February, the 90% relative humidity contour should move into northeast Oklahoma. This, along with a weak cold front and a weak upper-level disturbance, could trigger some stable precipitation over Texas and Oklahoma with the possibility of a few embedded thunderstorms. The amount of precipitation that falls north and northeast of Oklahoma depended on the speed of the front and the availability of moisture.

SATURDAY, FEBRUARY 1, 1992





## OPERATIONS SUMMARY

1 February 1992

Most observational systems were fully operational this first day of STORM-FEST. There were a few problems at some of the CLASS, PAM, and ASTER sites, but these were expected to be corrected in the next day or two.

The NCAR King Air was expected to arrive tomorrow, 2 February, after having some instrument problems. There were continuing major problems with the T-1 communications line from the National Severe Storms Laboratory to the Operations Center at Richards-Gebaur AFB.

Since no active weather was expected to occur over the STORM-FEST domain for the next 24- to 36-h; no operations were planned.

**STORM-FEST**  
**HOURLY COLLECTION OF DATA**

Date: 1 February  
Julian Day: 32

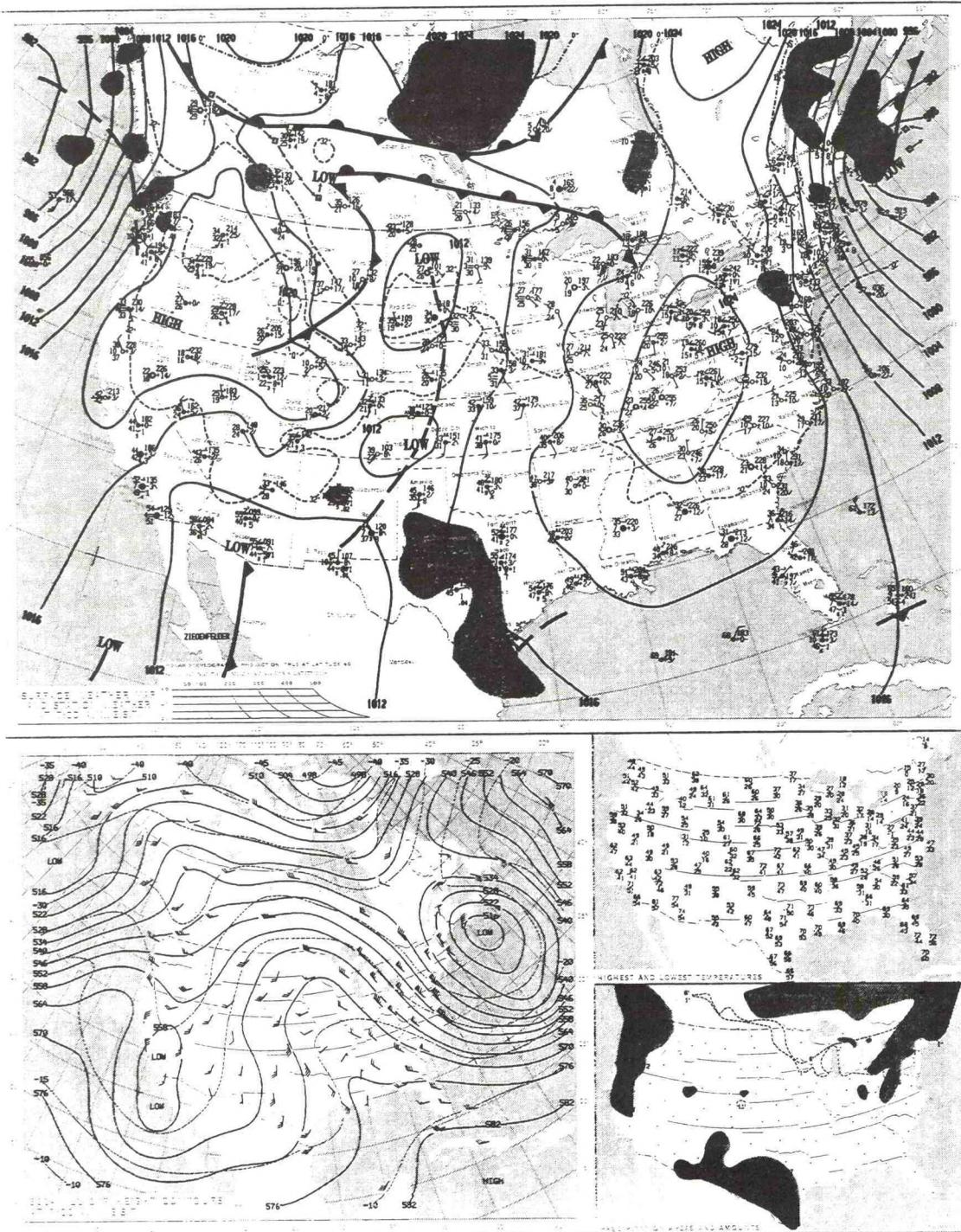
Time (UTC)

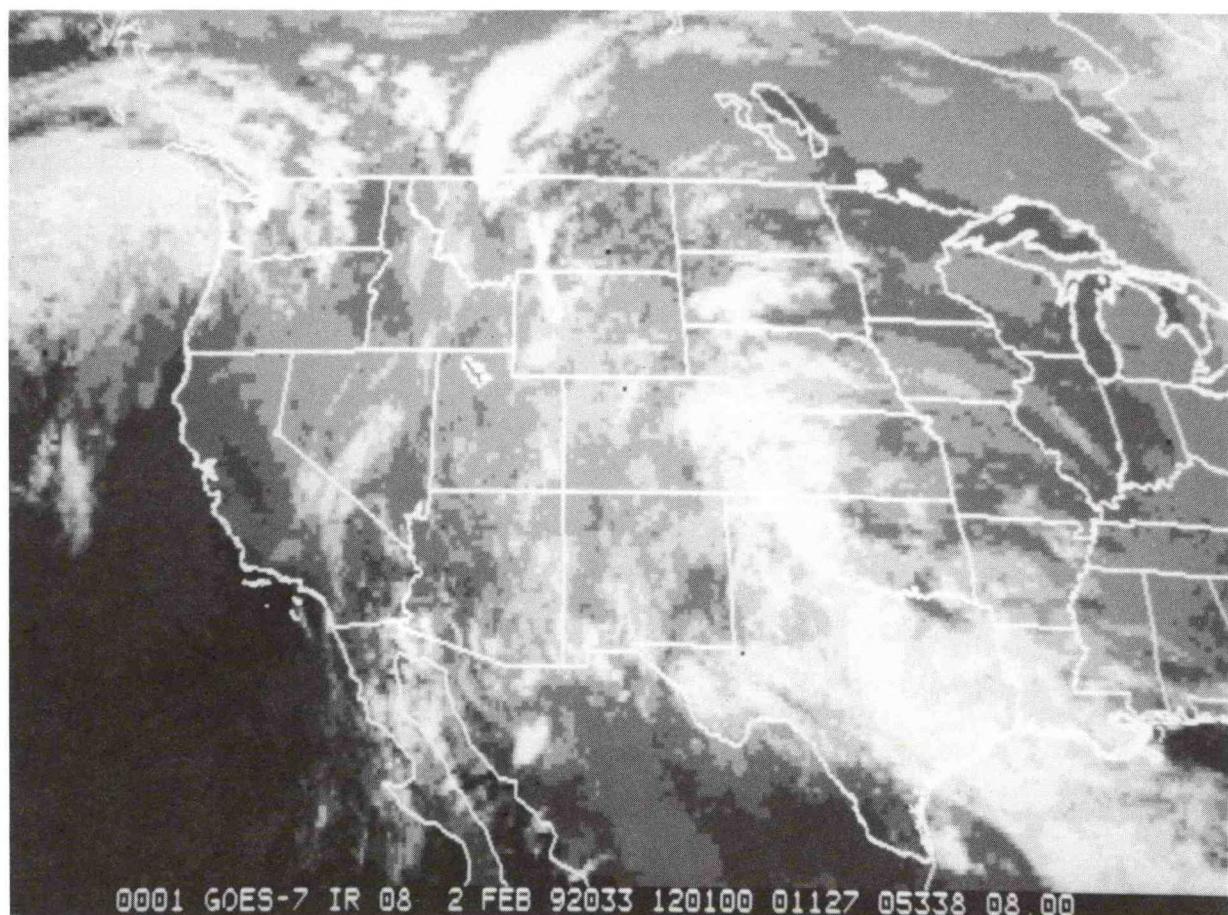
| DATA TYPE | SOURCE | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

| IOP       |                     |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|-----------|---------------------|----|---|--|--|--|--|--|--|--|--|--|--|--|--|--|----|--|--|--|--|--|--|--|--|---|
| UPPER AIR | CLASS               |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|           | NWS (Inner)         | 22 |   |  |  |  |  |  |  |  |  |  |  |  |  |  | 22 |  |  |  |  |  |  |  |  |   |
|           | NWS(Outer)          | 11 |   |  |  |  |  |  |  |  |  |  |  |  |  |  | 11 |  |  |  |  |  |  |  |  |   |
|           | Picket Fence        |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|           | Canadian            | 9  |   |  |  |  |  |  |  |  |  |  |  |  |  |  | 9  |  |  |  |  |  |  |  |  |   |
|           | Ft. Sill            |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|           | Flatlands           |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|           | Seneca              |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|           | HIS                 |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|           | BL Profiler (RASS)  |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  | 1  |  |  |  |  |  |  |  |  |   |
| RADAR     | BL Profiler (Winds) |    | ← |  |  |  |  |  |  |  |  |  |  |  |  |  | 1  |  |  |  |  |  |  |  |  | → |
|           | CP-3                |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|           | CP-4                |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|           | Mile High           |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|           | CHILL               |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|           | HOT                 |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|           | Cimarron            |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|           | KOUN                |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|           | KFDR                |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|           | KOKC                |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
| AIRCRAFT  | St. Louis           |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|           | Grand Island        |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|           | NOAA P-3            |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|           | NCAR KA             |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|           | UWYO KA             |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
| SATELLITE | UW C-131            |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|           | NASA ER-2           |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
| SATELLITE | GOES RISOP          |    |   |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |   |
|           | NOAA                |    | ▲ |  |  |  |  |  |  |  |  |  |  |  |  |  | ▲  |  |  |  |  |  |  |  |  |   |

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

Comments


|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 32 of 42 stations reported.                             |
|                 | AWOS  | 45 of 47 stations reported; 6 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 15 of 19 stations reported; 15 stations intermittent.   |
|                 | PAM5  | 35 of 35 stations reported; 5 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported; 3 stations intermittent.    |
|                 | SAO   | 390 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported.                             |


**NOTES:**

**WEATHER SUMMARY****2 February 1992**

The general weather pattern from yesterday, 1 February, continued over the STORM-FEST domain. The stationary front located over the central United States had dissipated. There was a weak trough extending north-south from the central Dakotas down through central Nebraska and western Oklahoma. A weak low pressure center was located over southern Canada, with a cold front extending down through Montana and Wyoming. This weak front was expected to move to the southeast over the next 24-h and provide the first frontal passage and possible precipitation in the STORM-FEST domain.

SUNDAY, FEBRUARY 2, 1992





## OPERATIONS SUMMARY

2 February 1992

Again with no interesting weather over the STORM-FEST domain, no operations were planned for the next 24-h. CP-3 and CP-4 operated briefly during the afternoon for testing purposes. An operational test of the CLASS network was performed at 0000 UTC in conjunction with the normal NWS rawinsonde release.

Planning began for the first IOP (Intensive Observation Period) to start 3 February to investigate the structure of the weak cold front that was expected to move through the STORM-FEST domain, as well as investigate any precipitation associated with it. The NCAR King Air and the C-131 aircraft were placed on alert. Soundings were requested from the Seneca CLASS site and the Monett, Mo., NWS inner domain site. The NCAR CP-3 and CP-4, and the NSSL Cimarron radar were placed on alert for possible operations.

## STORM-FEST HOURLY COLLECTION OF DATA

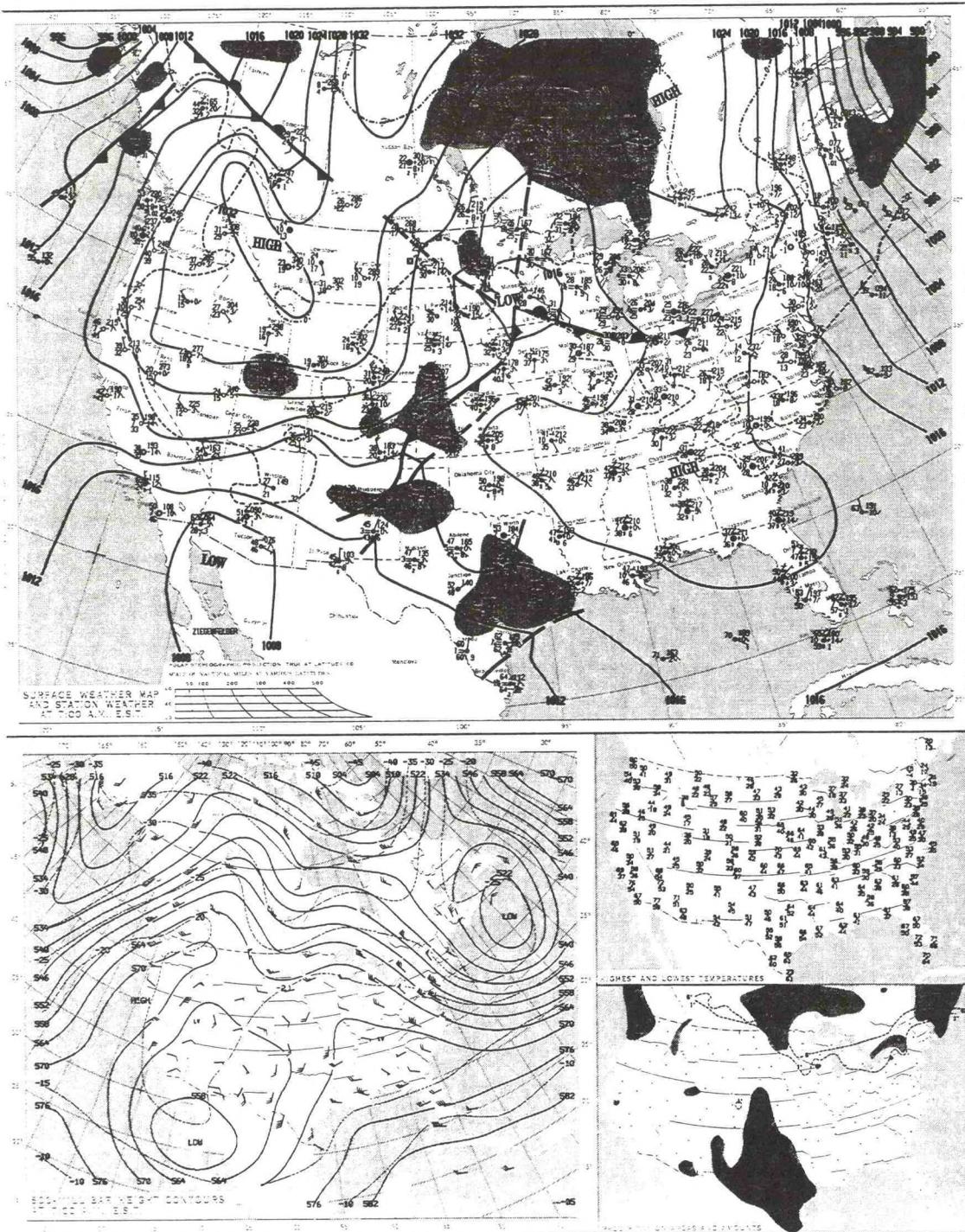
Date: 2 February  
 Julian Day: 33

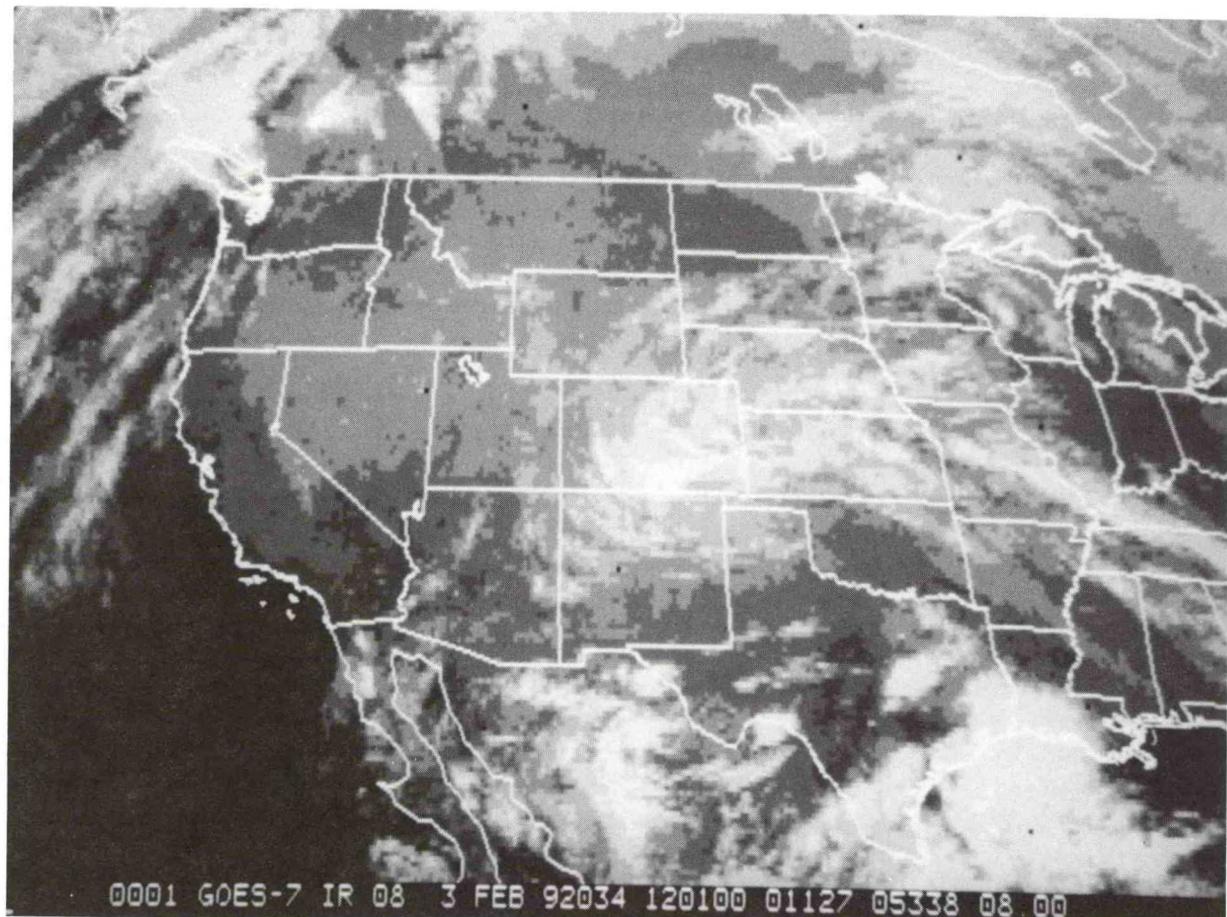
Time (UTC)

| DATA TYPE | SOURCE              | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|---------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| IOP       |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| UPPER AIR | CLASS               | 9  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|           | NWS (Inner)         | 22 |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 22 |    |    |    |    |    |    |    |    |    |
|           | NWS(Outer)          | 11 |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 11 |    |    |    |    |    |    |    |    |    |
|           | Picket Fence        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Canadian            | 9  |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 9  |    |    |    |    |    |    |    |    |    |
|           | Ft. Sill            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Flatlands           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Seneca              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | HIS                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | BL Profiler (RASS)  | 1  | ←  |    |    |    |    |    |    |    |    |    |    |    |    |    | 2  |    |    |    |    |    |    |    |    | →  |
|           | BL Profiler (Winds) | 1  | ←  |    |    |    |    |    |    |    |    |    |    |    |    |    | 4  |    |    |    |    |    |    |    |    | →  |
| RADAR     | CP-3                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CP-4                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Mile High           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CHILL               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | HOT                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Cimarron            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KOUN                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KFDR                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KOKC                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | St. Louis           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Grand Island        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| AIRCRAFT  | NOAA P-3            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NCAR KA             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | UWYO KA             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | UW C-131            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NASA ER-2           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| SATELLITE | GOES RISOP          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | ▲  |    |    |    |    |    |    |    |    |    |
|           | NOAA                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | ▲  |    |    |    |    |    |    |    |    |
|           |                     | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |

Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 32 of 42 stations reported; 2 stations intermittent.    |
|                 | AWOS  | 45 of 47 stations reported; 13 stations intermittent.   |
|                 | HPCN  | 73 of 73 stations reported; 3 stations intermittent.    |
|                 | ISWS  | 15 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 2 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported.                             |
|                 | SAO   | 387 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported.                             |


**NOTES:**


**WEATHER SUMMARY****3 February 1992**

The weak low pressure center that was located over southern Canada yesterday, 2 February, moved to the southeast and was located over southern Minnesota at 1200 UTC. A weak cold front extended southwestward from the low, and at 1200 UTC was located over eastern Nebraska, central Kansas and western Oklahoma. This cold front was expected to continue to move to the southeast and pass through the STORM-FEST boundary layer domain by early afternoon (2000 UTC). Little or no precipitation was expected along the front. The forecast progs indicated that this surface low and associated cold front would continue to move to the east over the next 24-h with possible precipitation in Texas and Oklahoma.

The NMC models agreed in keeping significant precipitation out of Oklahoma, instead focusing heavy precipitation over the west gulf coast. However, the MM4 model forecasted approximately 3 cm of precipitation near Wichita Falls, Texas, over the first 24-h forecast period from 1200 UTC. MM4 also forecasted a cm or so of precipitation in western Kansas, near where precipitation was occurring this morning, and maintained a stronger frontal structure than other models. It forecasted much colder air moving southward across Iowa, behind the shortwave trough, whereas the NGM model moved the cold air southeastward across the Great Lakes.

MONDAY, FEBRUARY 3, 1992





**OPERATIONS SUMMARY****3 February 1992**

Initial plans called for the NCAR King Air to fly a frontal mission on the weak cold front that was moving through Kansas and Missouri, as well as conduct a dropwindsonde test over the Seneca CLASS site. The dropwindsonde test was designed to investigate the potential interference problems with upsondes and dropsondes both transmitting near the same frequency. In addition, the University of Washington's C-131 was on alert for a possible cloud physics mission over the Little Washita basin in Oklahoma.

IOP 1 began at 1200 UTC with soundings from Seneca, KS, and Monett, MO. CP-4 began to collect clear air data at 1429 UTC and CP-3 began to collect data at 1510 UTC. The shallow cold front turned out to be so weak that it was decided at the 1500 UTC coordination meeting to switch emphasis to intercomparison flights between the University of Wyoming's King Air and the NCAR King Air. It was also decided to continue with the dropwindsonde test over the Seneca CLASS site.

The NCAR King Air took off at 2033 UTC and the University of Wyoming's King Air took off at 2122 UTC. An intercomparison showed general agreement between the two aircraft except for humidity. The CLASS and dropwindsonde interference test was completed and no interference problems were evident, although detailed evaluation of the data still needs to be completed. The possibility of HF radio and dropsonde interference was also tested and results were negative. The University of Wyoming King Air did conduct some frontal structure patterns to investigate what problems might be encountered in flying in the boundary layer domain. The NCAR King Air also flew in the boundary layer domain, but did not fly below 500 ft. The NCAR King Air landed at 2233 UTC and the University of Wyoming King Air landed at 2328 UTC.

The University of Washington's C-131 cloud physics flight was canceled when no precipitation developed over the Little Washita basin.

IOP 1 ended at 0000 UTC, 4 February.

## STORM-FEST HOURLY COLLECTION OF DATA

Date: 3 February  
Julian Day: 34

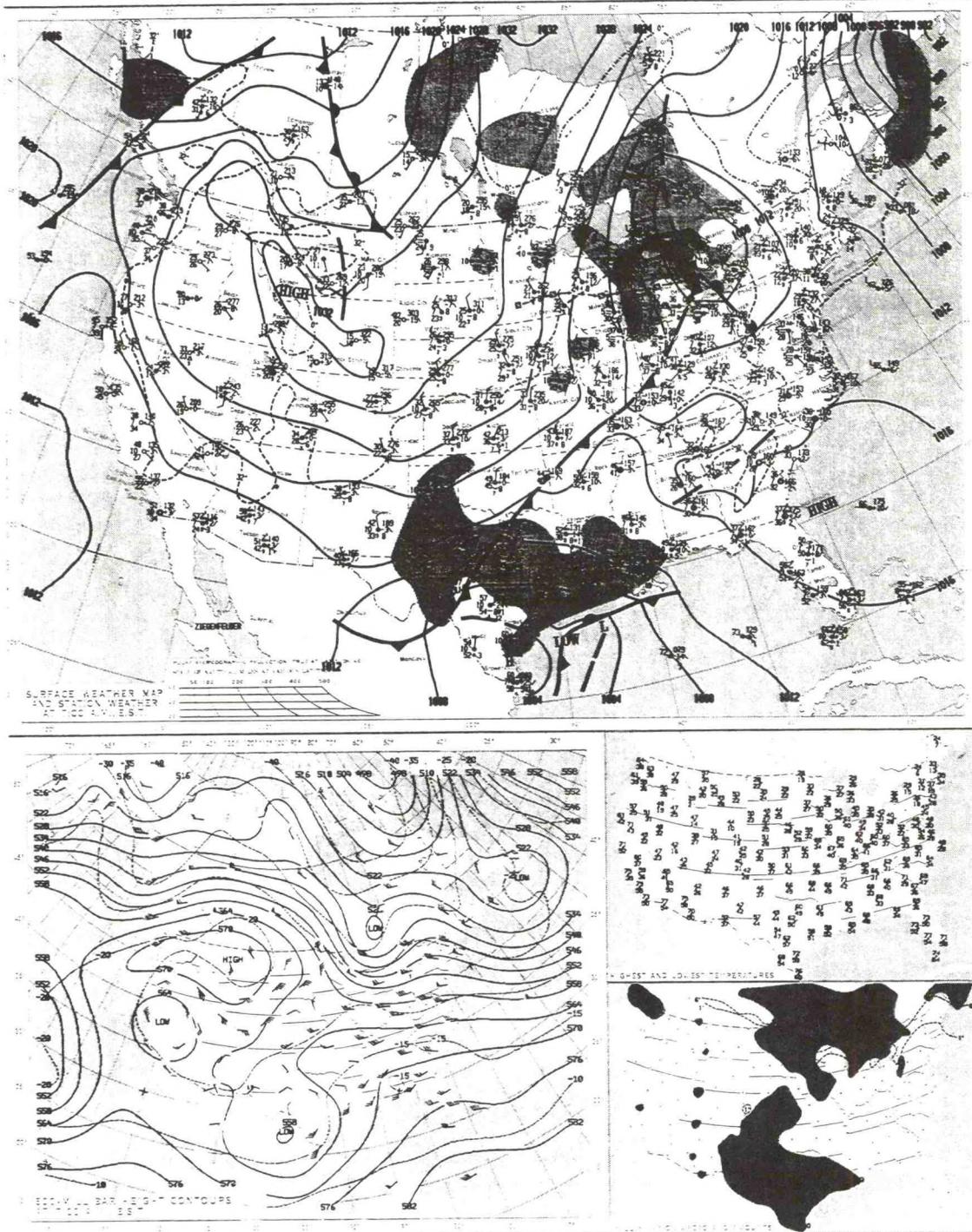
### Time (UTC)

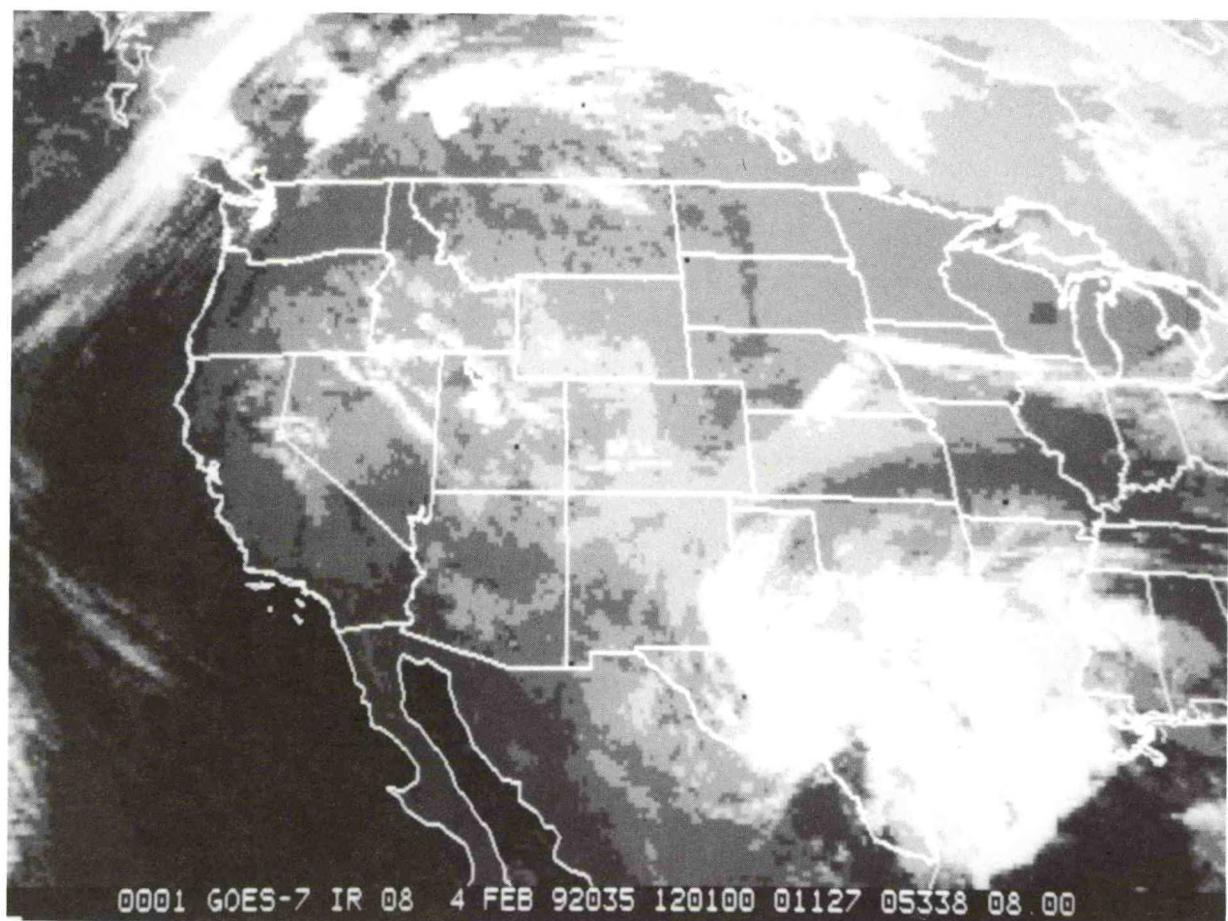
## Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 32 of 42 stations reported; 1 stations intermittent.    |
|                 | AWOS  | 45 of 47 stations reported; 9 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported; 2 stations intermittent.    |
|                 | ISWS  | 15 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 3 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported.                             |
|                 | SAO   | 398 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported.                             |

**NOTES:**

**WEATHER SUMMARY****4 February 1992**


A strong surface high pressure area moved into the STORM-FEST domain, with a 1032 mb center located over Wyoming and Montana. The surface low pressure area and associated cold front that was the initial focus of IOP 1, continued to move eastward out of the STORM-FEST domain. Split flow in the upper-levels (with the northern branch in southern Canada and the southern branch in old Mexico) left the STORM-FEST domain with generally fair weather conditions.


At the surface, a second cold surge had moved south through Kansas into Oklahoma, but did not produce any precipitation. Significant moisture was confined to south Texas, with an old polar continental front cutting off the return of Gulf moisture. Cool and generally clear conditions prevailed through the day over most of the STORM-FEST domain with some in the west southwest part of the STORM-FEST domain.

A small scale cyclonic vortex over Colorado could present a weak but interesting meteorological situation for Colorado during the next 24-h. Weak stability was allowing some amplification of this system, but this was not expected to last beyond 24-h as this system moved eastward into Oklahoma. Clear skies forecasted for northeast Kansas should allow for a radiation research aircraft flight planned for tomorrow, 5 February.

The forecast progs indicated that fair weather was expected to continue for the next several days over the STORM-FEST domain. Another trough should enter the STORM-FEST domain from the north during the next 24- to 48-h. Upper-level dynamics were expected to be strongest over the western Great Lakes, with frontal characteristics rather diffuse over Nebraska and Kansas. This continental polar airmass was relatively dry and precipitation was not expected.

TUESDAY, FEBRUARY 4, 1992





## OPERATIONS SUMMARY

4 February 1992

With the strong surface high pressure area dominating the weather over the STORM-FEST domain, no operations were conducted this 24-h period.

## STORM-FEST HOURLY COLLECTION OF DATA

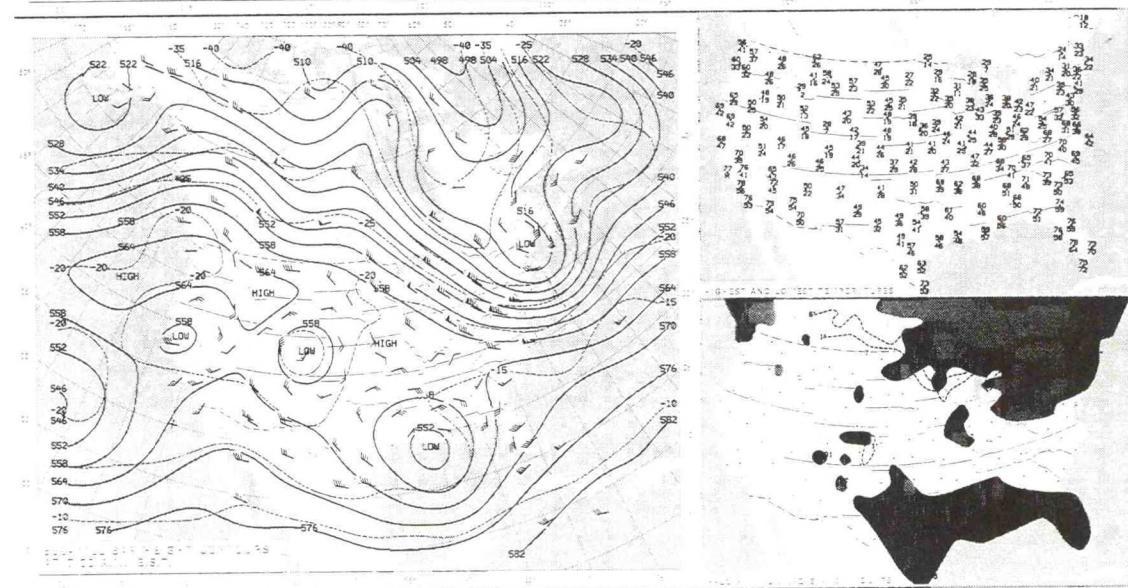
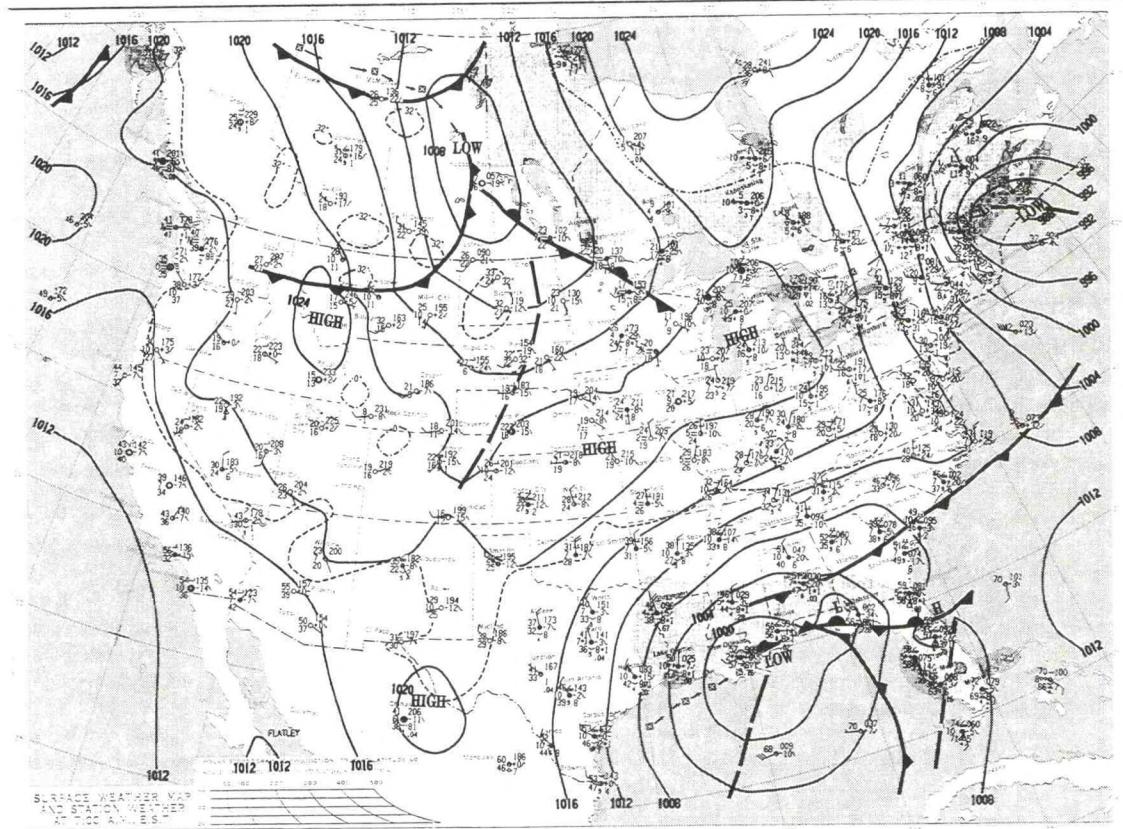
Date: 4 February  
 Julian Day: 35

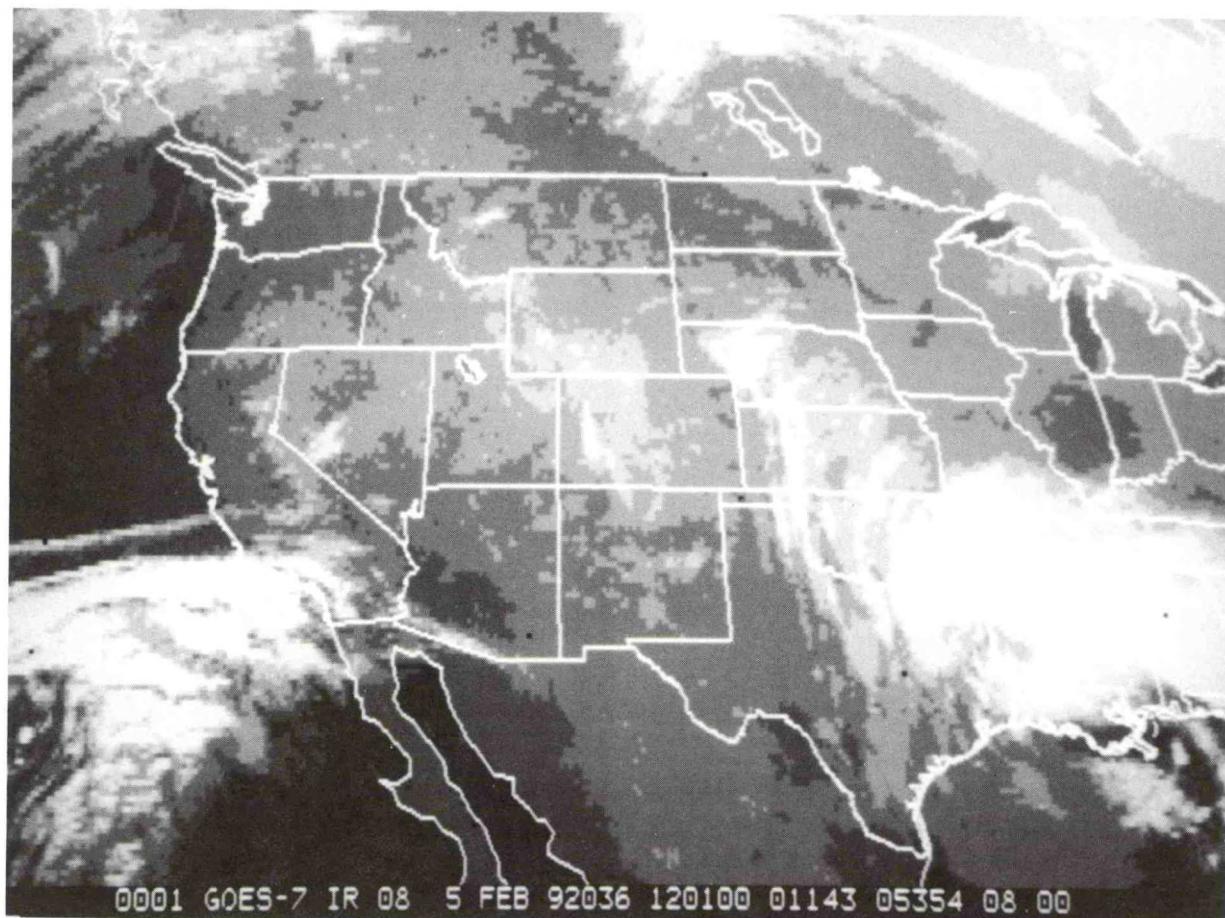
Time (UTC)

| DATA TYPE | SOURCE                | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | OC |   |
|-----------|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|
| IOP       |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |
| UPPER AIR | CLASS                 |    |    |    |    |    |    | 1  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |   |
|           | NWS (Inner)           | 21 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 22 |    |    |    |    |    |    |    |    |   |
|           | NWS(Outer)            | 11 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 11 |    |    |    |    |    |    |    |    |   |
|           | Picket Fence          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |
|           | Canadian              | 9  |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 9  |    |    |    |    |    |    |    |    |    |   |
|           | Ft. Sill              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 12 |    |    |    |    |    |    |    |    |   |
|           | Flatlands             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 13 |    |    |    |    |    |    |    |   |
|           | Seneca                |    | ■  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |
|           | HIS                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | ■ |
|           | BL Profiler (RASS) <  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 2  |    |    |    |    |    |    |    |    |   |
|           | BL Profiler (Winds) < |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 4  |    |    |    |    |    |    |    |    | ➤ |
| RADAR     | CP-3                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |
|           | CP-4                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |
|           | Mile High             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |   |
|           | CHILL                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |
|           | HOT                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |
|           | Cimarron              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |
|           | KOUN                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |
|           | KFDR                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |
|           | KOKC                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |
|           | St. Louis             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |
|           | Grand Island          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |
| AIRCRAFT  | NOAA P-3              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |
|           | NCAR KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |
|           | UWYO KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |
|           | UW C-131              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |
|           | NASA ER-2             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |
| SATELLITE | GOES RISOP            |    |    | ▲  |    |    |    |    |    |    |    |    |    |    |    |    | ▲  |    |    |    | ▲  |    |    |    |    |    |   |
|           | NOAA                  |    |    | ▲  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

### Comments



|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 32 of 42 stations reported; 1 stations intermittent.    |
|                 | AWOS  | 45 of 47 stations reported; 8 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 15 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 5 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported.                             |
|                 | SAO   | 393 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported; 1 station intermittent.     |


**NOTES:**

**WEATHER SUMMARY****5 February 1992**

The strong high pressure area that dominated the weather over the past several days continued to move to the east. Once again, as on 2 February, a weak surface low pressure area was located over southern Canada, with a cold front extending into Montana and Idaho. This surface low and associated cold front was expected to move to the southeast along the back side of the upper level trough, and be in the STORM-FEST domain tomorrow, 6 February.

WEDNESDAY, FEBRUARY 5, 1992





**OPERATIONS SUMMARY****5 February 1992**

Again with fair weather over the STORM-FEST domain, no operations were carried out during this 24-h period. The NCAR King Air flew a radiation mission during the night as part of a cooperative experiment run by Jim Telford of DRI, to investigate the evolution of the surface boundary layer through the night.

The scientific goal of this experiment was to relate the changes in air temperature at night to the radiative exchange and, in particular, to examine the upwelling radiation (both broad band and the narrow band IR) relative to the temperature and composition of the air below.

In conducting this experiment, a sequence of aircraft soundings showed that the air below the inversion warmed to about the dry adiabatic lapse rate. The moisture structure clearly showed the early inversion, but the temperature inversion smoothed out with time. The moisture then proceeded up against the stable temperature gradient, so a moisture increase occurred up to a level where the temperature lapse rate showed an increase to greater than the wet adiabatic rate.

This behavior agreed with a recent study showing that moisture commonly rises above the level of the heat flux. However, a strong west wind above the inversion could have been a factor in the moisture change, due to advection. The air was (probably) very hazy and this may also have enhanced the radiative heating of the air below the inversion (i.e., the haze particles are probably black in the atmospheric IR window).

We did not classify the radiation flights as STORM-FEST IOP's, although the data could be quite interesting with a number of vertical soundings being taken during the night by the King Air Aircraft (0600 UTC, 0730 UTC, 0900 UTC, 1030 UTC, 1200 UTC) in clear sky conditions. There were a total of three radiation missions flown during the STORM-FEST period.

**Other Activities:**

The NOAA P-3 and the University of Washington C-131 took advantage of the fair weather to conduct an intercomparison flight. The C-131 took off at 1537 UTC and the NOAA P-3 took off at 1556 UTC. Both aircraft were back on the ground by 1847 UTC. The intercomparison results looked quite good.

Planning for IOP 2 began to investigate the structure of the cold front and any associated precipitation that was forecasted to move through the STORM-FEST domain tomorrow (6 February). Six CLASS sites and 3 NWS sites were notified to take supplemental soundings starting on 6 February from 1200 UTC to 0000 UTC (7 Feb). The Wyoming King Air and the NCAR King Air aircraft were placed on alert. The radars were not put on alert at this time.

## STORM-FEST HOURLY COLLECTION OF DATA

Date: 5 February

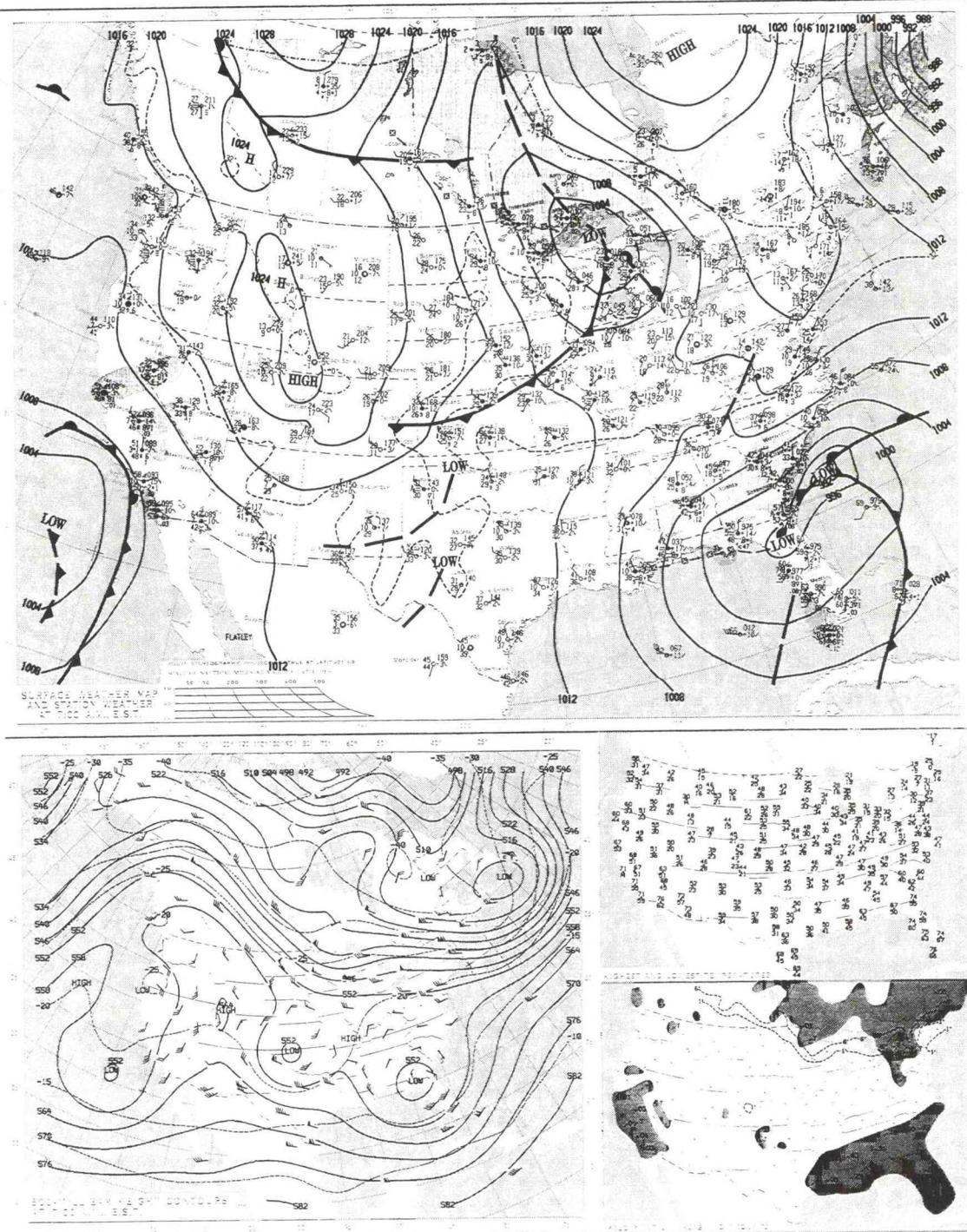
Julian Day: 36

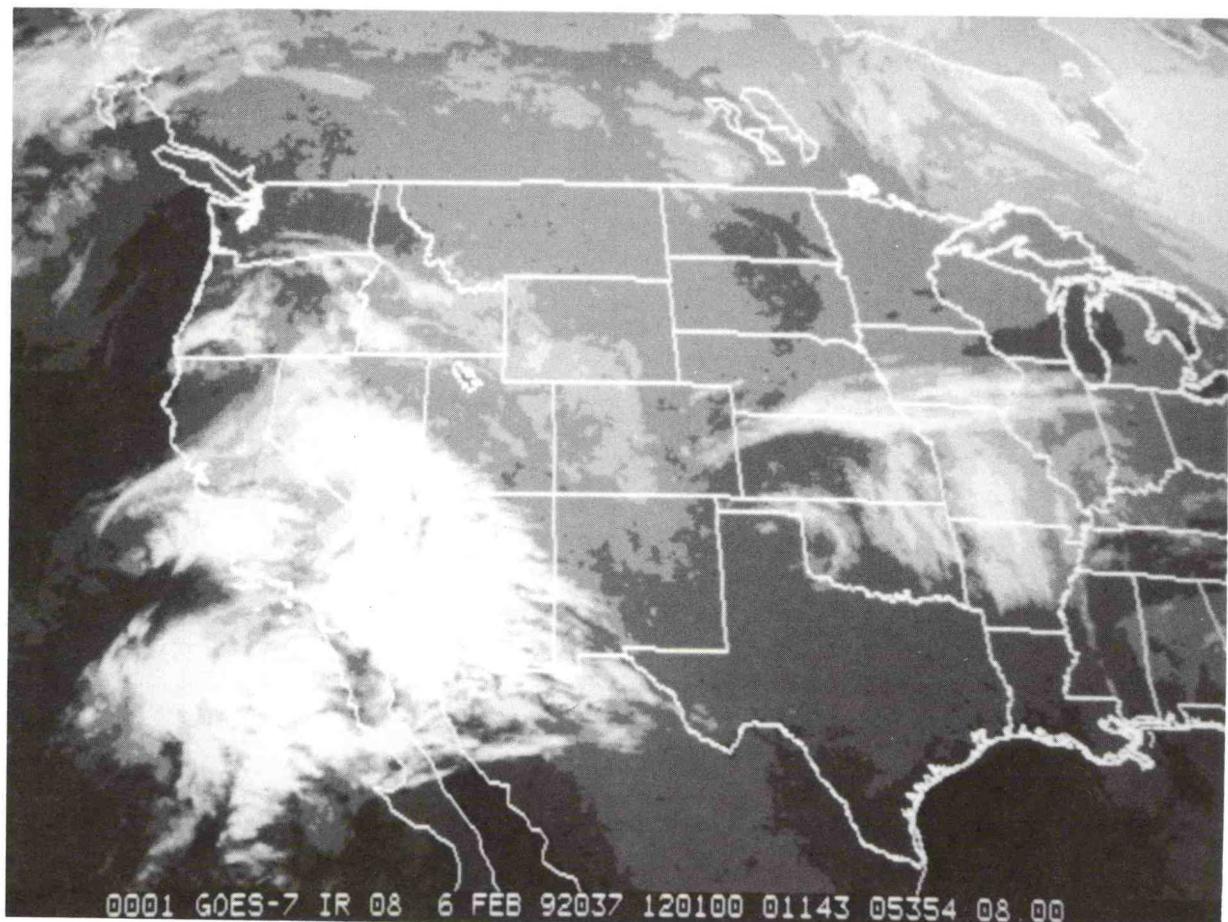
Time (UTC)

| DATA TYPE | SOURCE                | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| IOP       |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| UPPER AIR | CLASS                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NWS (Inner)           | 22 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NWS(Outer)            | 11 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|           | Picket Fence          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Canadian              | 9  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 9  |
|           | Fl. Sill              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Flatlands             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Seneca                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | HIS                   | 1  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | BL Profiler (RASS) <  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 2  |
|           | BL Profiler (Winds) < |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 4  |
| RADAR     | CP-3                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CP-4                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Mile High             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CHILL                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | HOT                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Cimarron              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KOUN                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KFDR                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KOKC                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | St. Louis             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Grand Island          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| AIRCRAFT  | NOAA P-3              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NCAR KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | UWYO KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | UW C-131              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NASA ER-2             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| SATELLITE | GOES RISOP            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NOAA                  |    | ▲  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | ▲  |

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 18 18 19 20 21 22 23 00

## Comments


|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 33 of 42 stations reported; 2 stations intermittent.    |
|                 | AWOS  | 45 of 47 stations reported; 9 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 16 of 19 stations reported; 1 station intermittent.     |
|                 | PAMS  | 35 of 35 stations reported; 4 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported.                             |
|                 | SAO   | 389 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported; 1 station intermittent.     |


**WEATHER SUMMARY****6 February 1992**

The surface low pressure center that was seen on 5 February over southern Canada, continued to move to the southeast and was located over Lake Superior at 1200 UTC. A cold front extended southwestward from the low, through Wisconsin, Iowa, Missouri and Kansas. This cold front was producing some very light rainfall over the central and eastern regions of the STORM-FEST domain.

Arctic air was located much further to the north of the front over the Canadian prairies. A building surface ridge just east of the Canadian Rockies was expected to push this arctic air into the eastern and central portions of the STORM-FEST domain in the next 24- to 36-h period. This should be a strong baroclinic feature, but no significant precipitation was expected.

THURSDAY, FEBRUARY 6, 1992





**OPERATIONS SUMMARY****6 February 1992**

IOP 2 was conducted from 1200 UTC, 6 February to 0000 UTC, 7 February, to document the vertical structure of the weak, dry cold front that was moving through the STORM-FEST domain. Three hourly supplemental soundings from 6 CLASS sites and 3NWS inner domain sites were taken during this period.

The MM-4 model forecast guidance initialized 24-h earlier (1200 UTC, 5 February) suggested that the frontal system consisted of a prefrontal pressure trough and windshift, corresponding to a thermal ridge, with the leading edge of the cold air behind (northwest of) the pressure trough. In the process of planning the mission, it was noted that the post frontal region might be cloudy and the prefrontal region relatively clear.

The University of Wyoming King Air took off at 1200 UTC to document the vertical structure of the cold front. The aircraft mission consisted of a stack of four 120 nm long legs (at 2k, 3k, 4k, 5 kft. pressure-altitude MSL; subtract  $\sim$  1 kft. to obtain ft. AGL) centered at the Kirksville (IRK) VOR. The stack was oriented 335/155 degrees (magnetic). In addition, several ascent and decent soundings were taken to and from 8 kft. Aircraft observations showed that even though the front was relatively weak and dry, it was characterized by multiple transition zones which was suggested in the MM-4 forecast guidance. The mission identified three distinct airmass regimes: 1) a very dry, warm region in the southeastern region of the flight, characterized by unlimited visibility; 2) a more moist, cooler region in the central portion of the flight (encountered about 1255 UTC at 2 kft.) which appeared somewhat hazy on approach from the southeast; and 3) a nearly saturated, cold, stratus-filled region on the northwestern end of the flight. The moisture boundaries appeared to be much narrower or more abrupt compared with the temperature and wind transitions. Each of these regimes was sampled on the 2 kft. flight leg. The aircraft landed at Richards-Gebaur at 1620 UTC.

The GOES-7 Satellite began RISOP mode at 2100 UTC. (Not in support of STORM-FEST objectives.)

**STORM-FEST**  
**HOURLY COLLECTION OF DATA**

Date: 6 February  
Julian Day: 37

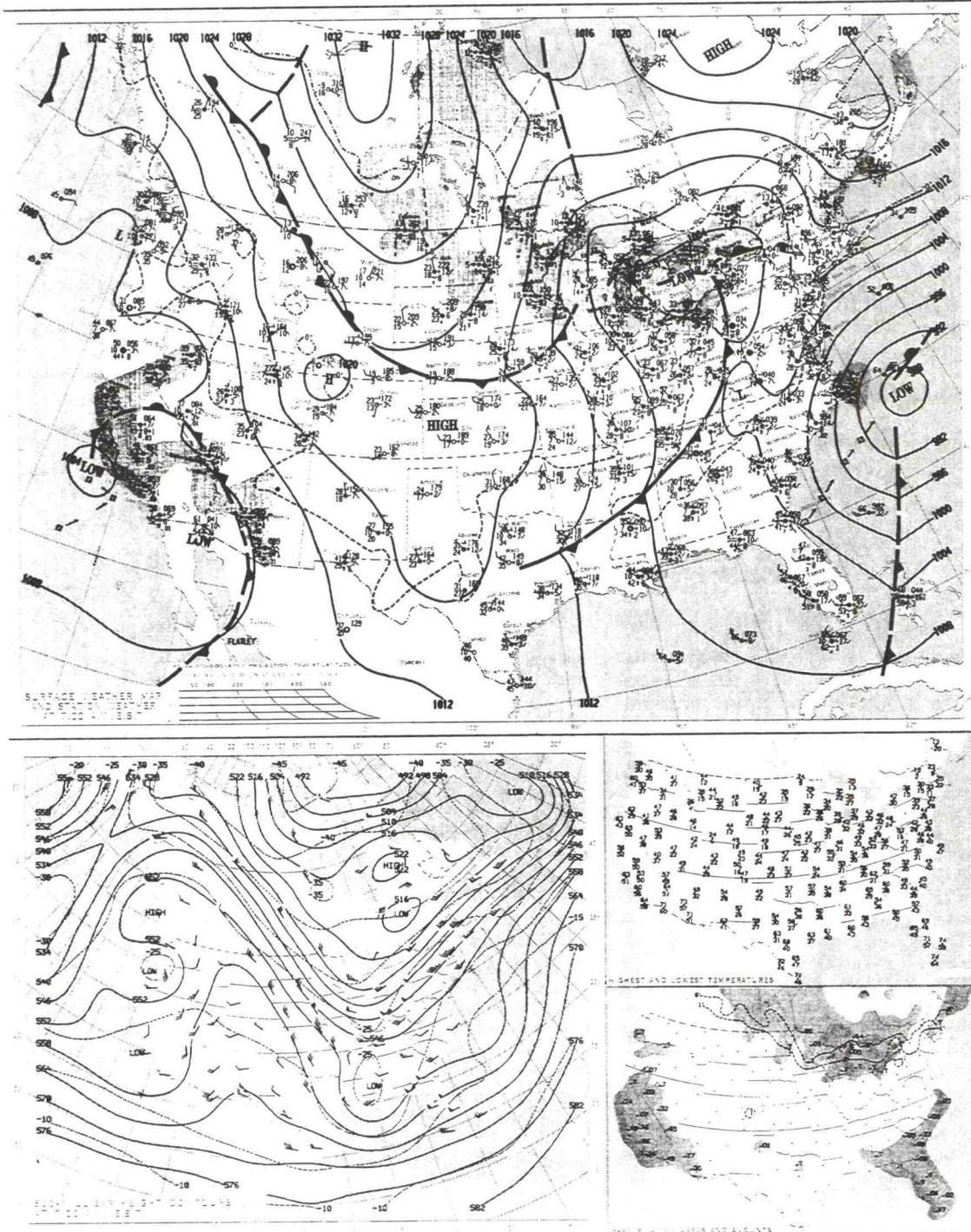
Time (UTC)

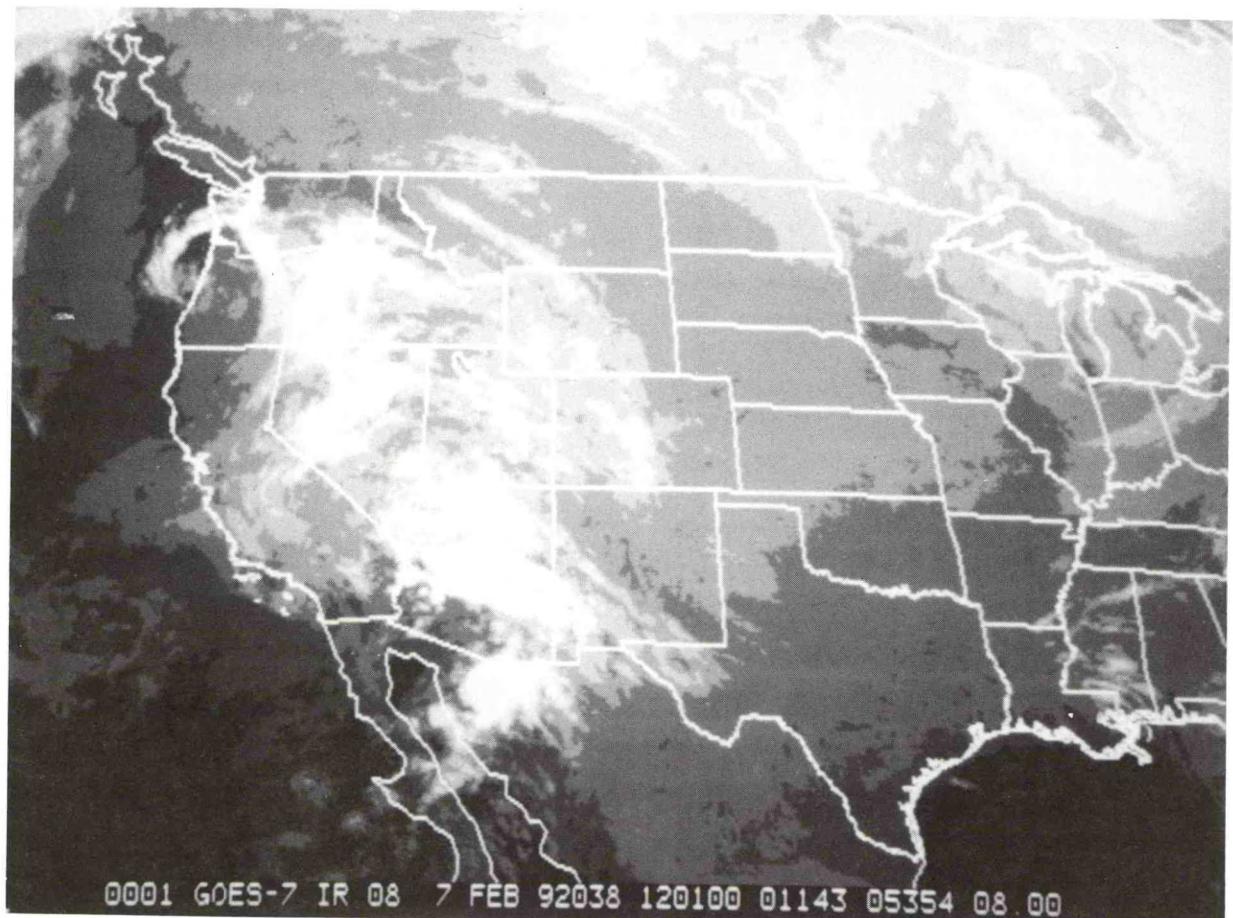
| DATA TYPE | SOURCE              | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|---------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| IOP       |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| UPPER AIR | CLASS               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NWS (Inner)         | 21 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NWS(Outer)          | 10 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Picket Fence        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Canadian            | 9  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Ft. Sill            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Flatlands           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Seneca              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | HIS                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | BL Profiler (RASS)  | 2  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | BL Profiler (Winds) | 4  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| RADAR     | CP-3                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CP-4                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Mile High           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CHILL               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | HOT                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Climarron           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KOUN                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KFDR                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KOKC                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | St. Louis           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Grand Island        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| AIRCRAFT  | NOAA P-3            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NCAR KA             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | UWYO KA             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | UW C-131            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NASA ER-2           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| SATELLITE | GOES RISOP          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NOAA                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 33 of 42 stations reported; 1 stations intermittent.    |
|                 | AWOS  | 44 of 47 stations reported; 5 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported; 3 stations intermittent.    |
|                 | PAM5  | 35 of 35 stations reported; 2 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported; 2 stations intermittent.    |
|                 | SAO   | 394 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 13 of 13 stations reported; 13 stations intermittent.   |


**NOTES:**


**WEATHER SUMMARY****7 February 1992**

A large surface high pressure area continued to dominate the STORM-FEST region. A secondary cold front was beginning to move through Nebraska and Iowa at 1200 UTC and was expected to move through the region early on 8 February. There was some possibility that there might be some very light snow over the front range of the Rockies, but no other precipitation was expected in the STORM-FEST domain.

The next 24- to 48-h was forecasted to be rather quiet as lee troughing began to push the frontal boundary into the plains. Late in the period, several short-waves in the upper-level flow could begin to interact with the boundary in the eastern half of STORM-FEST area. The 0000 UTC, 7 February, MRF run and the 1200 UTC, 7 February, NGM agreed fairly well with the timing of the shortwaves. The wave in the northern branch appeared to be the one for concern as it moves through the northern portion of the STORM-FEST area. Low-level moisture along, and east of the warm front was expected to increase as the northern wave approached and warm advection set up. At this time, a light snow event was forecasted in the next 48- to 72-h over the Iowa/Missouri border and into central southern Illinois with this system. Some snow might begin as early Sunday morning, 9 February.

FRIDAY, FEBRUARY 7, 1992





## OPERATIONS SUMMARY

7 February 1992

With one more fair weather day over the STORM-FEST domain, no operations were carried out. Planning for IOP 3 began, with the IOP scheduled to begin at 0600 UTC, 9 February. This IOP will focus on the precipitation that was expected to develop along the cold front as it moved into the STORM-FEST domain.

The GOES-7 Satellite began RISOP mode at 2100 UTC. (Not in support of STORM-FEST objectives.)

## STORM-FEST HOURLY COLLECTION OF DATA

Date: 7 February  
Julian Day: 38

Time (UTC)

| DATA TYPE | SOURCE | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

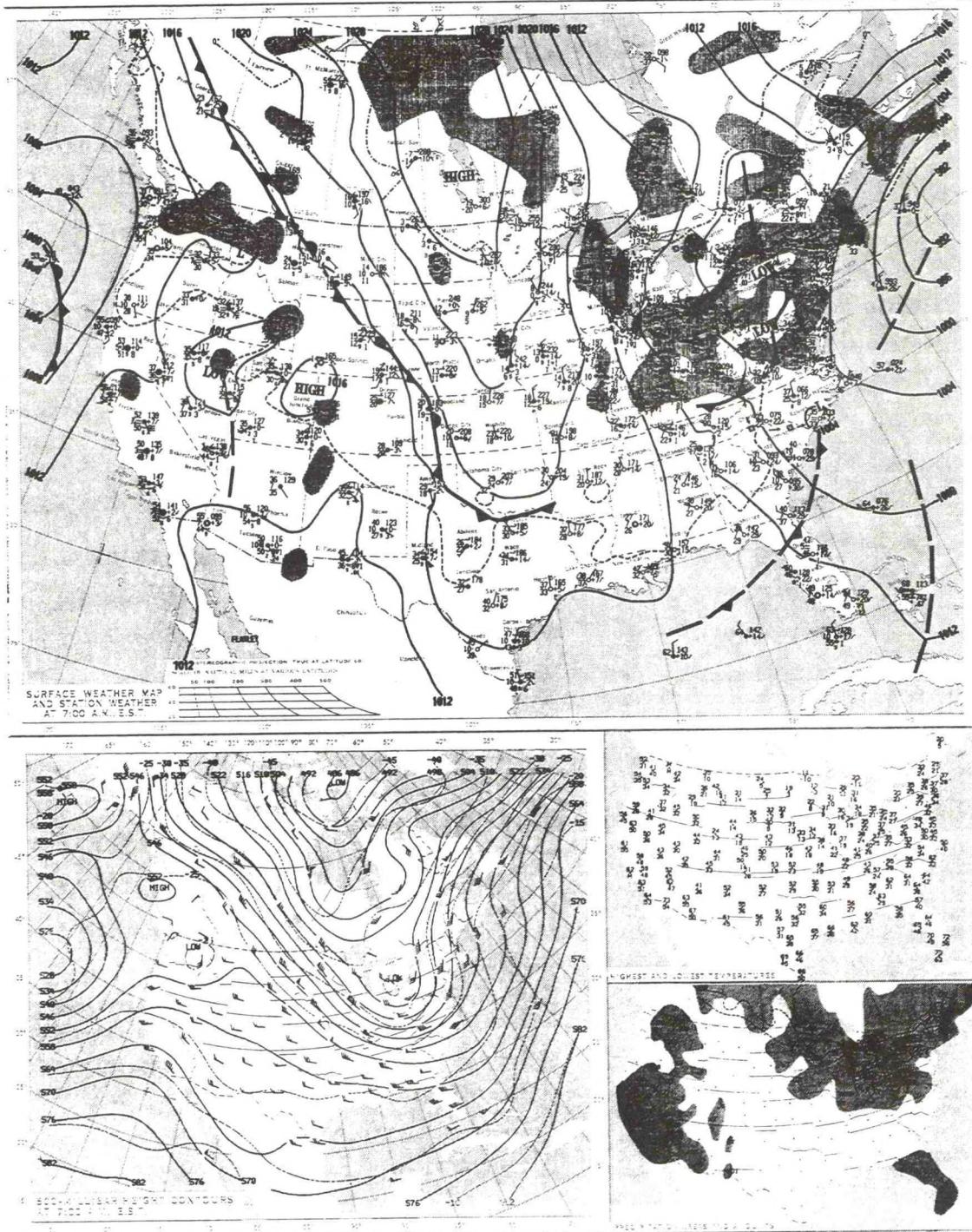
| IOP       |                       |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|-----------|-----------------------|----|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|----|--|--|--|--|--|--|--|--|
| UPPER AIR | CLASS                 | 4  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|           | NWS (Inner)           | 22 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 22 |  |  |  |  |  |  |  |  |
|           | NWS(Outer)            | 11 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 11 |  |  |  |  |  |  |  |  |
|           | Picket Fence          |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|           | Canadian              | 9  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 9  |  |  |  |  |  |  |  |  |
|           | Ft. Sill              |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|           | Flatlands             |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|           | Seneca                |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|           | HIS                   |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|           | BL Profiler (RASS) <  |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2  |  |  |  |  |  |  |  |  |
| RADAR     | BL Profiler (Winds) < |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 4  |  |  |  |  |  |  |  |  |
|           | CP-3                  |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|           | CP-4                  |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|           | Mile High             |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|           | CHILL                 |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|           | HOT                   |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|           | Climarron             |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|           | KOUN                  |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|           | KFDR                  |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|           | KOKC                  |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
| AIRCRAFT  | St. Louis             |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|           | Grand Island          |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|           | NOAA P-3              |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|           | NCAR KA               |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|           | UWYO KA               |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
| SATELLITE | UW C-131              |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|           | NASA ER-2             |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
| SATELLITE | GOES RISOP            |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |
|           | NOAA                  |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |

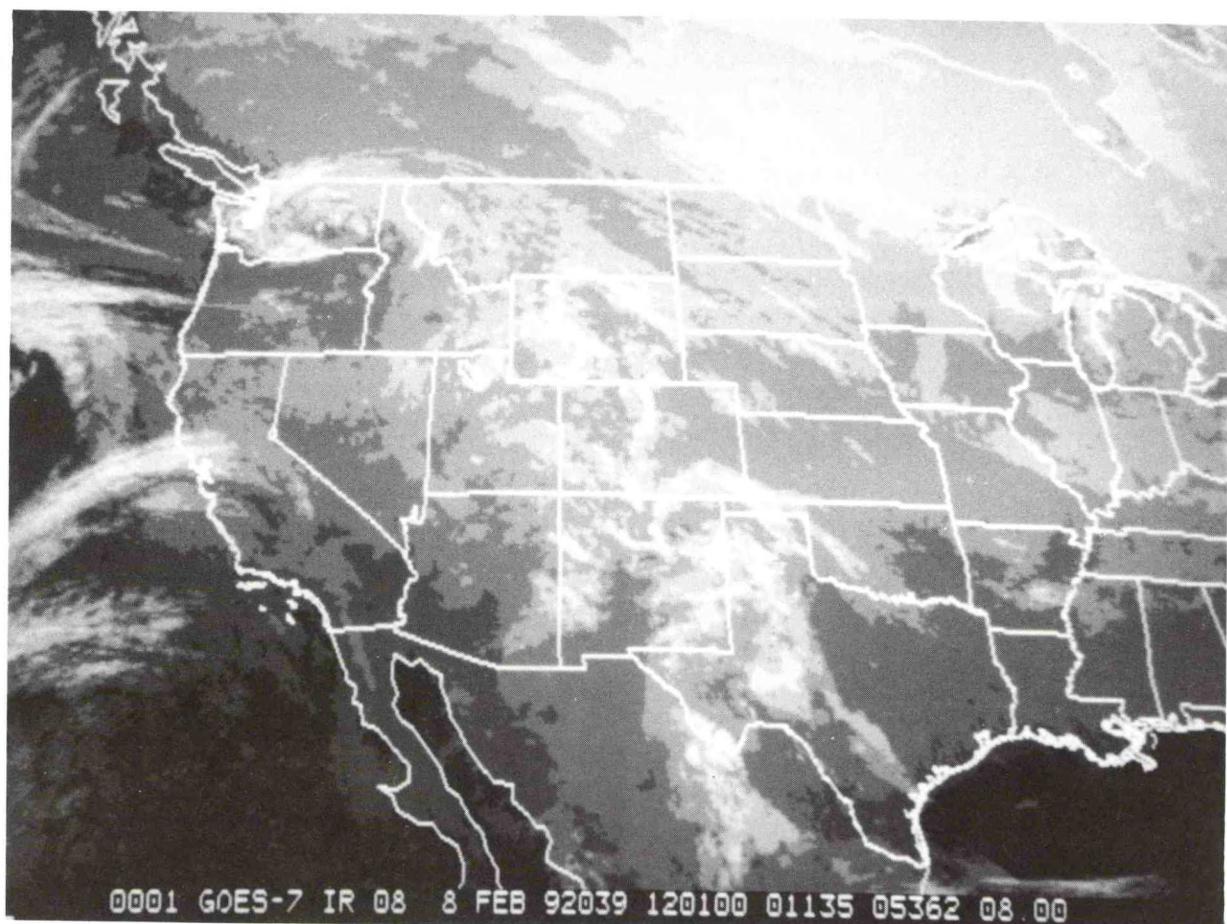
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

### Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 33 of 42 stations reported.                             |
|                 | AWOS  | 44 of 47 stations reported; 3 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 4 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported; 2 stations intermittent.    |
|                 | SAO   | 395 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 13 of 13 stations reported; 7 stations intermittent.    |

**NOTES:**


**WEATHER SUMMARY****8 February 1992**


Another strong high pressure area centered over southern Canada was pushing cold air over most of the STORM-FEST area, with a stationary front backing up to the front range of the Rockies. Some very light precipitation occurred over eastern Nebraska and the Dakotas.

By 1200 UTC tomorrow, (9 February) precipitation was expected to break out along and ahead of the front in eastern Kansas, Nebraska, Iowa, and western Missouri; although precipitation amounts were not expected to be significant. The MM-4 model indicated increasing cloud moisture in the eastern STORM-FEST area, suggesting icing could be a problem over eastern Kansas, eastern Nebraska, northwestern Missouri and southwestern Iowa for the 1200 UTC-to-1800 UTC, 9 February period.

By 1800 UTC, 9 February, the front was forecast to be across eastern Kansas, Nebraska, and Oklahoma. Low-level warm advection should be increasing through the central plains with good isentropic lift over the frontal boundary. Early precipitation along and east of the front would be mainly light, but could be enhanced by an approaching Pacific shortwave. It did not appear that there would be any jet streak influence with this event, since there appeared to be no indication of a speed max associated with the shortwave.

SATURDAY, FEBRUARY 8, 1992





## OPERATIONS SUMMARY

**8 February 1992**

No operations were carried out during the day. IOP 3 was scheduled to begin 9 February at 1200 UTC extending until 0000 UTC, 10 February. The focus of this IOP was to study the precipitation bands associated with warm frontal overrunning. CLASS soundings were scheduled to begin at 1200 UTC, extending to 2100 UTC. NWS inner domain soundings were requested for 1500, 1800 and 2100 UTC. The CP-3 and CP-4 radars were placed on alert to begin at 1200 UTC. The University of Washington C-131 and University of Wyoming King Air aircraft were placed on alert for a possible 1200 UTC take-off.

In addition, scientists were beginning to look at a 4th IOP that could begin as early as 0000 UTC on the 11th. Details for this IOP were still being developed.

# STORM-FEST

## HOURLY COLLECTION OF DATA

Date: 8 February  
 Julian Day: 39

Time (UTC)

| DATA TYPE | SOURCE | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

| IOP       |                       |    | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| UPPER AIR | CLASS                 | 1  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
|           | NWS (Inner)           | 22 |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 22 | 1  | 1  | 1  |    |    |    |    |    |    |    |
|           | NWS(Outer)            | 11 |    |    |    |    |    |    |    |    |    |    |    |    |    | 11 |    |    |    |    |    |    |    |    |    |    |    |
|           | Picket Fence          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Canadian              | 9  |    |    |    |    |    |    |    |    |    |    |    |    | 9  |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Ft. Sill              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Flatlands             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Seneca                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | HIS                   |    | 1  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | BL Profiler (RASS) <  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 2  |    |    |    |    |    |    |    |    |    |    |
| RADAR     | BL Profiler (Winds) < |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 4  |    |    |    |    |    |    |    |    |    |
|           | CP-3                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CP-4                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Mile High             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CHILL                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | HOT                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Cimarron              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KOUN                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KFDR                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KOKC                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| AIRCRAFT  | St. Louis             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Grand Island          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| SATELLITE | NOAA P-3              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NCAR KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | UWYO KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | UW C-131              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NASA ER-2             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | GOES RISOP            |    | 1  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NOAA                  |    |    | ▲  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

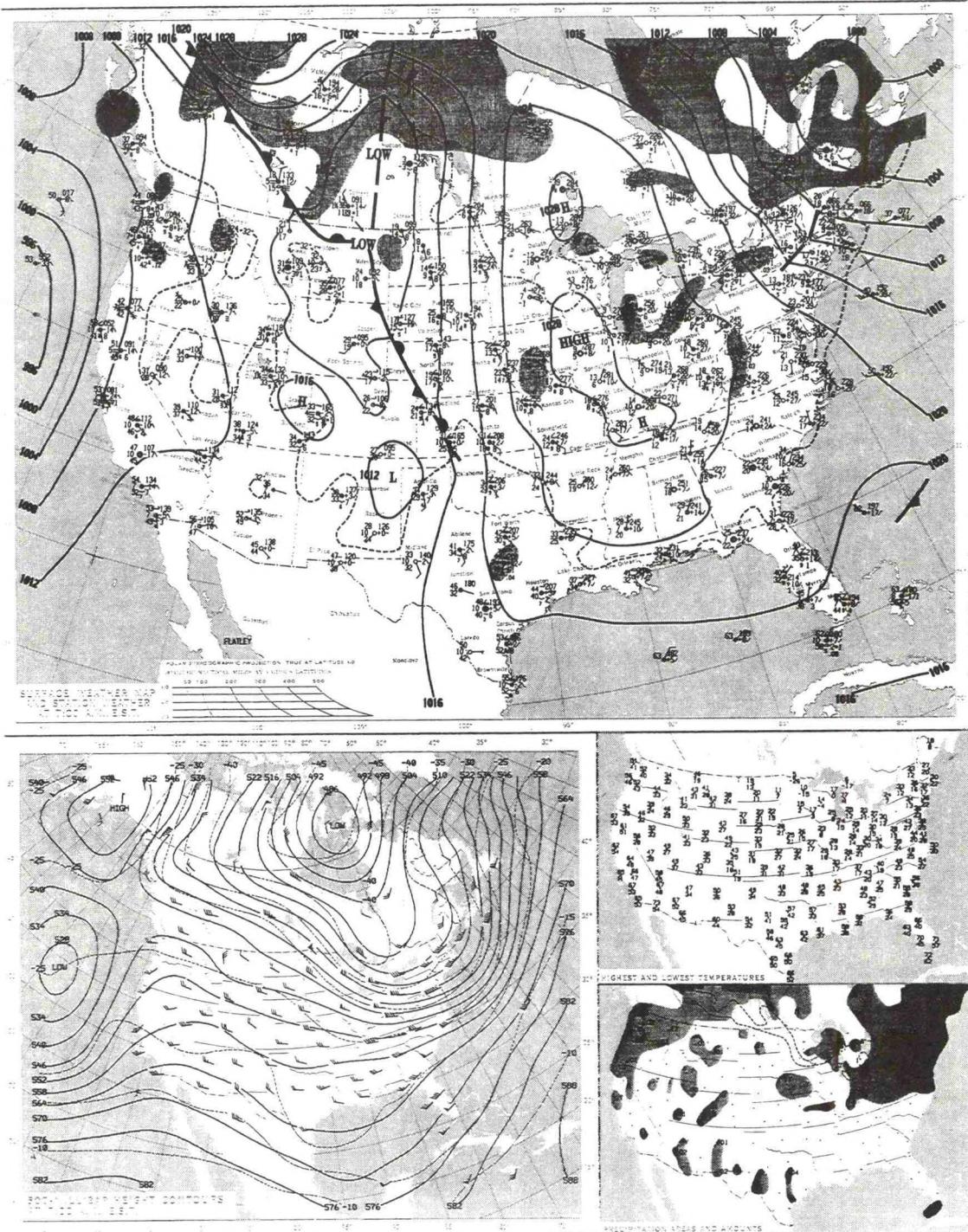
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 18 20 21 22 23 00

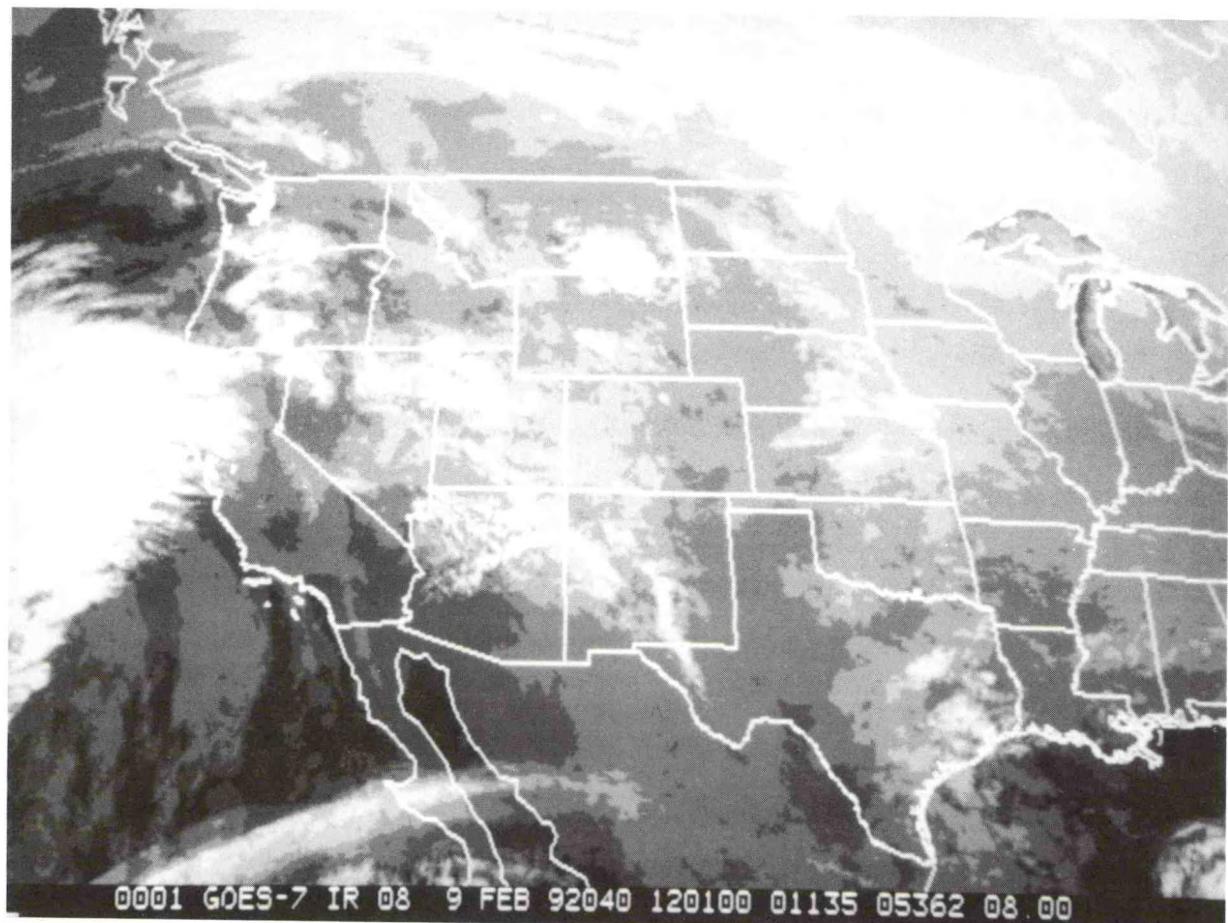
### Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 33 of 42 stations reported; 1 station intermittent.     |
|                 | AWOS  | 46 of 47 stations reported; 6 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 5 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported.                             |
|                 | SAO   | 386 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 13 of 13 stations reported.                             |

**NOTES:**

**WEATHER SUMMARY****9 February 1992**


The strong surface high pressure area seen yesterday, 8 February, had moved to the southeast and was centered over Illinois. A weak stationary front was located over western Kansas, Nebraska and Wyoming and was expected to move slowly eastward to extend from northeast Iowa to eastern Arkansas by 0000 UTC tomorrow, 10 February. At 1200 UTC, light precipitation was occurring over eastern Nebraska and Iowa.


This front was forecast to move eastward and lie north-south through eastern Illinois by 1800 UTC, 10 February. Broken low-level cloud with some isolated showers were expected to occur near the front throughout the period.

A new surge of arctic air was currently poised over northern Montana and was expected to push into the extreme northern STORM-FEST area by 0000 UTC, 10 February. The front was forecast to move southeastward and be in the Oklahoma/Arkansas area in 48-h. The depth of the arctic air should be limited to below 700 mb, but deepen dramatically over the extreme northern STORM-FEST region. The airmass should be quite dry with only a few showers expected near the front, especially over the eastern STORM-FEST areas.

There was some concern that the long range models may not be initializing the systems off the west coast very well. Generally, the models were forecasting a push of more energy into the southern stream, south of the STORM-FEST area. This would keep the cold front from moving much further southwestward. The magnitude of this impulse was uncertain, thus leading to uncertainties in the frontal position in the next 24- to 48-h.

SUNDAY, FEBRUARY 9, 1992



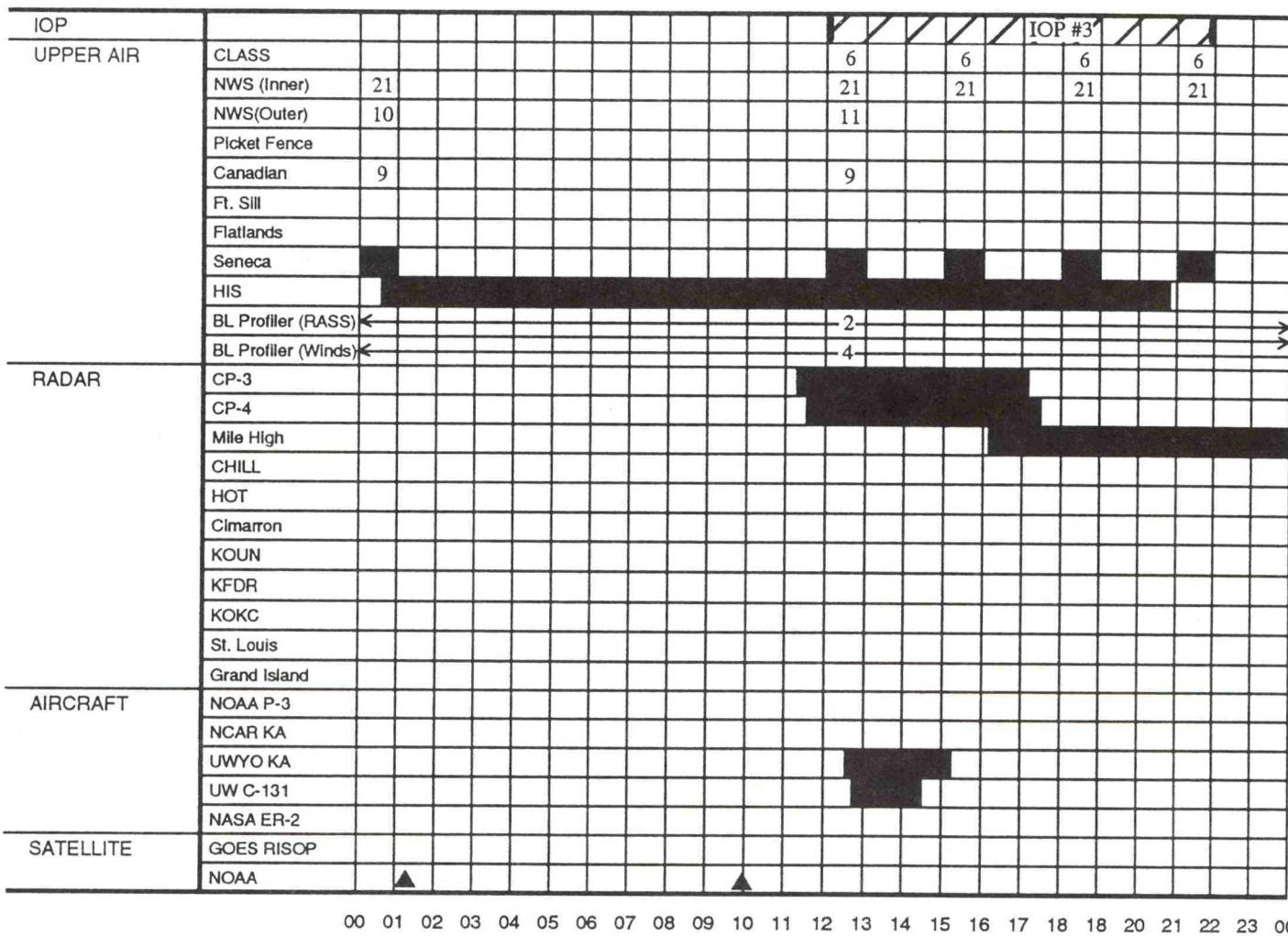


**OPERATIONS SUMMARY****9 February 1992**

IOP 3 began at 1200 UTC (continuing to 2100 UTC, 9 February) with the objective to investigate the structure and precipitation associated with a very weak warm frontal overrunning situation. Weak radar echoes [0-20 dBZ] were present in two areas; one over the dual-Doppler (CP-3 and CP-4) area, and the other over southwest Iowa and northwest Missouri. The base of the warm frontal surface was located approximately 1 km above the surface. CLASS soundings were taken at 1200, 1500, 1800, and 2100 UTC and inner domain NWS supplemental soundings were taken at 1500, 1800, and 2100 UTC. The CP-3 and CP-4 Doppler radars operated from 1200 UTC to 1700 UTC monitoring the weak precipitation in the area.

Two aircraft flights were conducted. The University of Washington C-131 took off at [approximately] 1300 UTC and flew north of the CP-4 radar into the strongest echoes [ $\sim$  20 dBZ]. They did a vertical sounding to 12 kft where they encountered the top of the cloud. At that time they developed engine problems and had to return to Richards-Gebaur AFB.

The University of Wyoming King Air took off at 1230 UTC, climbed to 10 kft. and flew southwest, descending along an "M surface" that extended to approximately Wichita. The aircraft came back on a similar leg to a position about 50 km southeast of CP-3, and then flew stacked 40 km legs to measure the geostrophic and ageostrophic wind components. The aircraft finished the flight with a descent sounding near Richards-Gebaur AFB and landed at 1510 UTC. The IOP ended at 2100 UTC, 9 February.


Planning continued for IOP 4, to study the vertical structure of the cold front and any precipitation associated with it. The IOP was scheduled to begin at 0600 UTC tomorrow, 10 February, with the start of upstream NWS and Canadian soundings. Supplemental NWS inner domain and CLASS soundings were scheduled to begin at 1500 UTC. The CP-3 and CP-4 dual-Doppler radars were placed on alert starting at 1700 UTC. All aircraft were placed on alert with no flights scheduled prior to 1800 UTC.

## STORM-FEST HOURLY COLLECTION OF DATA

Date: 9 February  
Julian Day: 40

Time (UTC)

| DATA TYPE | SOURCE | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

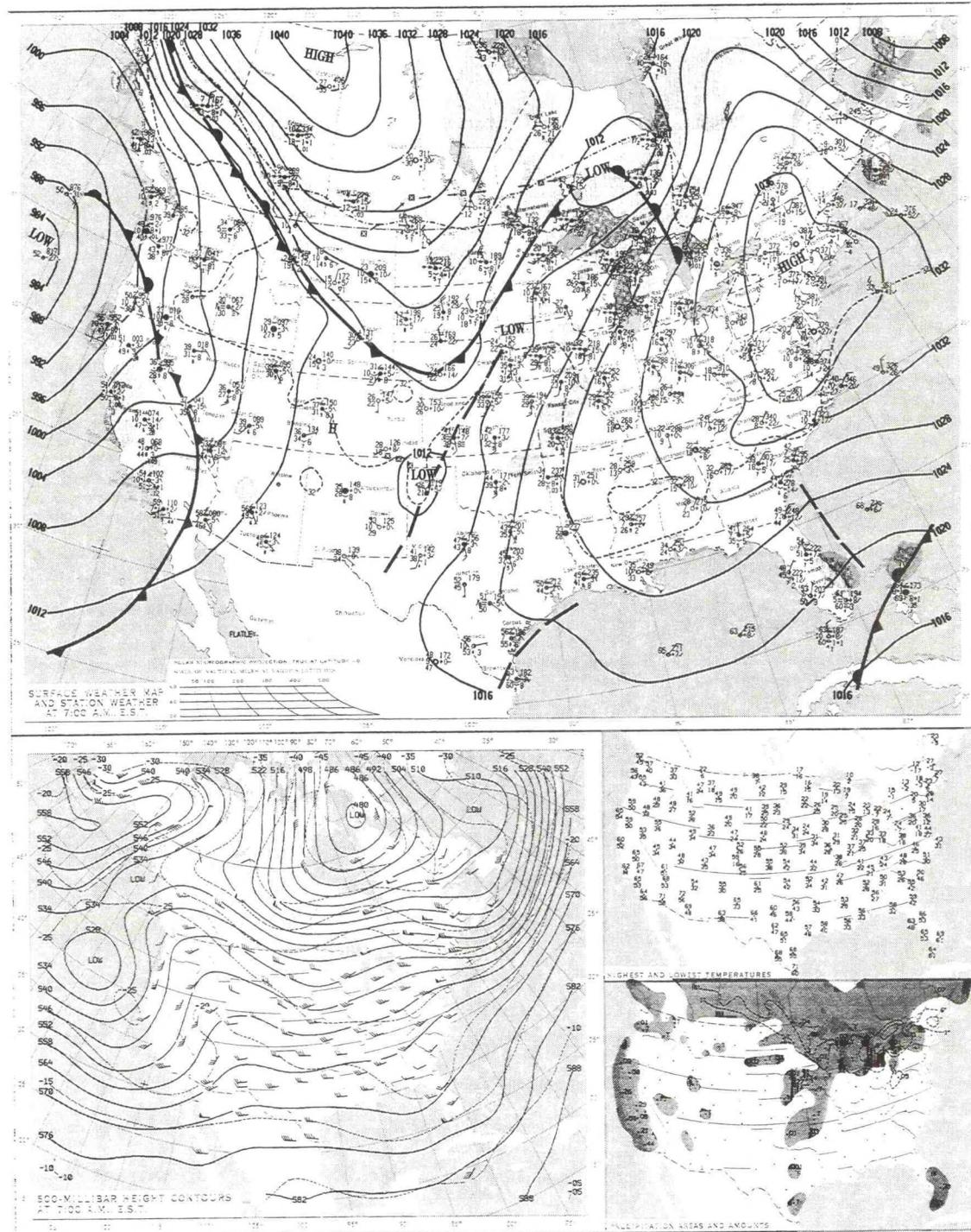


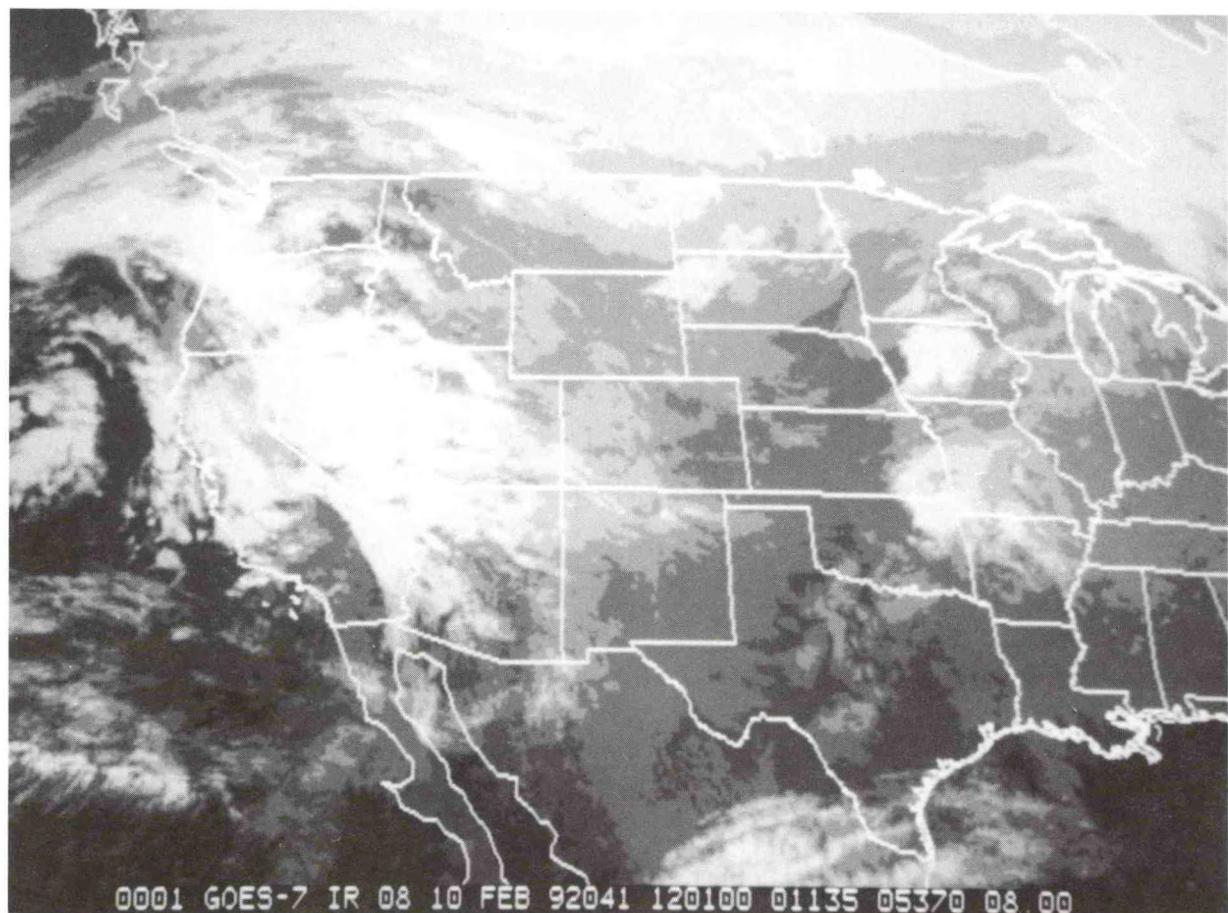
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

### Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 33 of 42 stations reported.                             |
|                 | AWOS  | 46 of 47 stations reported; 2 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 5 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported; 2 stations intermittent.    |
|                 | SAO   | 383 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 13 of 13 stations reported.                             |

**NOTES:**


**WEATHER SUMMARY****10 February 1992**


The weak arctic cold front that was discussed yesterday, had moved down through the northern portion of the STORM-FEST domain from a low pressure center located north of Lake Superior. The front was forecasted to weaken during the afternoon. Precipitation had developed and moved into Illinois and a small area of rain and freezing rain developed well southeast of the front in northeast Arkansas, in an area of isentropic uplift (seen on the 296K surface) and a nicely collocated PV anomaly at 320K. Both areas of precipitation were forecasted to weaken and propagate eastward through the period. No precipitation occurred in the CP-3 and CP-4 dual-Doppler area.

By tomorrow (0000 UTC, 11 February) the front was forecast to extend from southeastern Wyoming to near the STORM-FEST boundary layer network. There might be some freezing drizzle generated in the low-level clouds behind the front. Precipitation accumulation was expected to be insignificant in the next 24-h.

A major shortwave had moved into central and south California, driven by a 120 kt jet, and should begin to affect the STORM-FEST domain by 0000 UTC, tomorrow (11 February). AVN grids indicate two areas of greater than .01 inch of precipitation: one in Texas along the Gulf coast and the other centered on Arkansas, Missouri and Oklahoma, with a .03 inch max 6-h accumulation ending at 1200 UTC.

MONDAY, FEBRUARY 10, 1992





**OPERATIONS SUMMARY****10 February 1992**

IOP 4 began at 0600 UTC with the start of Canadian and NWS outer domain soundings. CLASS and NWS inner domain soundings began at 1500 UTC. The objective of this IOP was to document the vertical structure of a shallow arctic cold front and any precipitation associated with it. The IOP ended at 0000 UTC, 11 February.

Since no precipitation occurred with the front, the NCAR King Air and University of Wyoming King Air flew a stacked pattern centered on Des Moines, Iowa. The mission was to define the vertical structure of this (relatively) dynamically simple front, as well as test aircraft coordination techniques. The NCAR King Air took off at 1820 UTC and the Wyoming King Air took off at 1830 UTC.

Initially, the NCAR King Air dropped dropwindsondes from 25 kft in a cross section directly over the low-level track flown by the Wyoming King Air. After completion of this part of the mission the aircraft did a descent sounding and joined-up with the Wyoming King Air northeast of Des Moines, Iowa. The aircraft then flew in stacked formation along a track between 2 kft and 3 kft with the Wyoming King Air 1 kft below the NCAR King Air. At the end of this track both aircraft flew back to Des Moines to refuel. The second flight of both aircraft was a stacked flight pattern on the return to Richards-Gebaur AFB via the boundary layer array. Both aircraft landed at approximately 2250 UTC. Airborne mission scientist reports indicated that there was substantial structure associated with the front; both in the vertical and the horizontal.

The NCAR CP-3 and CP-4 radars operated from about 1600 UTC, 10 February, through 0000 UTC, 11 February. Primary scanning mode was the surveillance mode since no precipitation developed in their area. The radars did observe some very interesting frontal structure at about 2300 UTC. Digitized radar data was collected at St. Louis beginning at 1530 UTC. GOES-7 RISOP mode began at 2100 UTC and extended through 0100 UTC (11 February).

Subsequent to the end of this IOP, the arctic front began to interact with a storm system to the west of the STORM-FEST area. Since the objectives for investigating this new storm system were significantly different than for this IOP, it was decided to formally end this IOP and start a new one, IOP 5.

Plans for IOP 5, were to begin NWS outer domain soundings at 0000 UTC, tomorrow, 11 February, operating for 12-h until 1200 UTC 11 February. The NWS inner domain and CLASS soundings were also scheduled to begin at 0000 UTC (11 February) and operate until 1200 UTC (12 February). The CP-3, CP-4 and the Illinois State Water Survey HOT Radars were placed on alert beginning at 0900 UTC, 11 February. The NSSL Cimarron radars were placed on alert beginning at 0900 UTC, 11 February. RISOP was scheduled to begin at 1200 UTC, 11 February, and extend to 1200 UTC, 12 February. All aircraft were placed on alert, with the earliest take-off at 1300 UTC, 11 February.

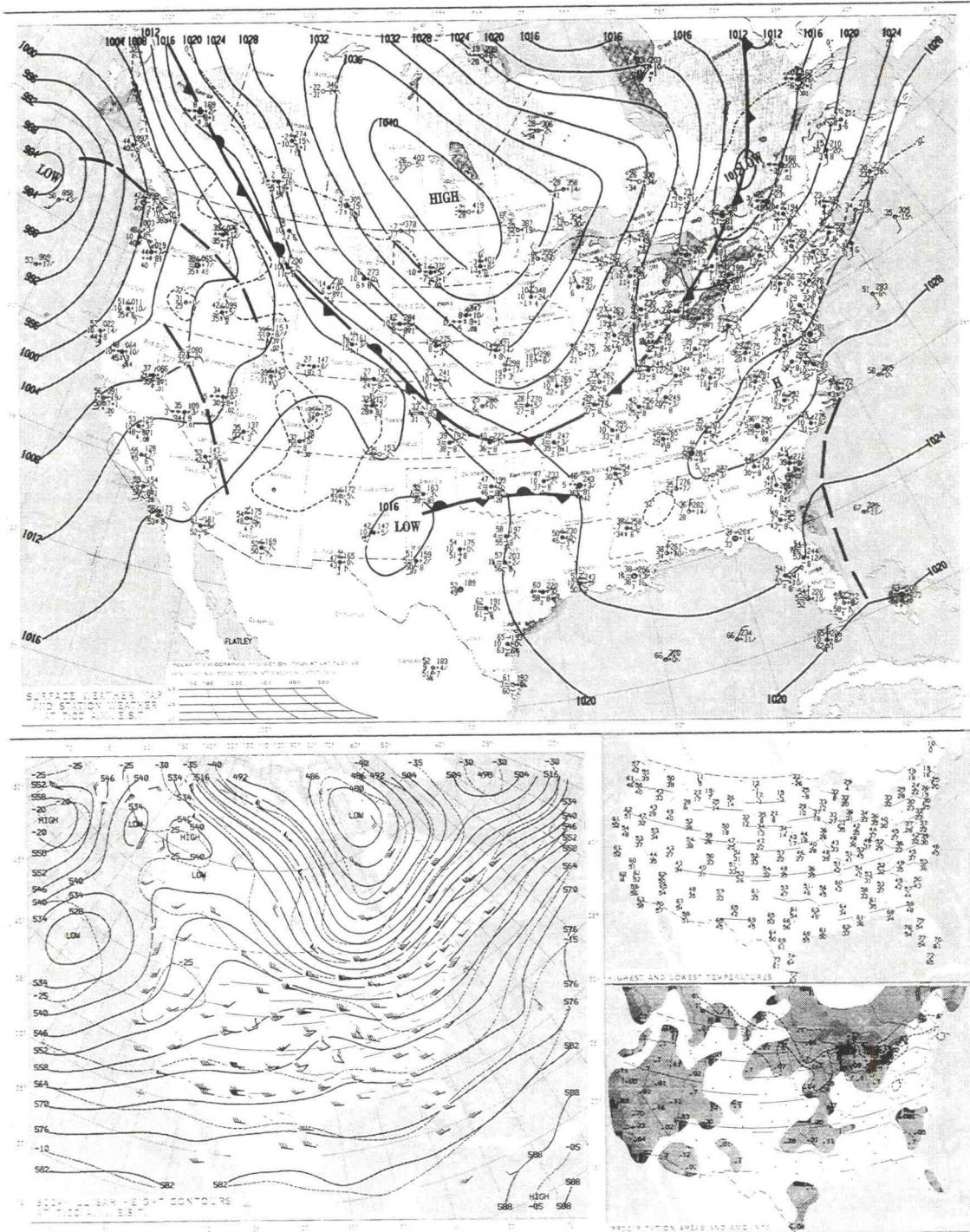
## STORM-FEST HOURLY COLLECTION OF DATA

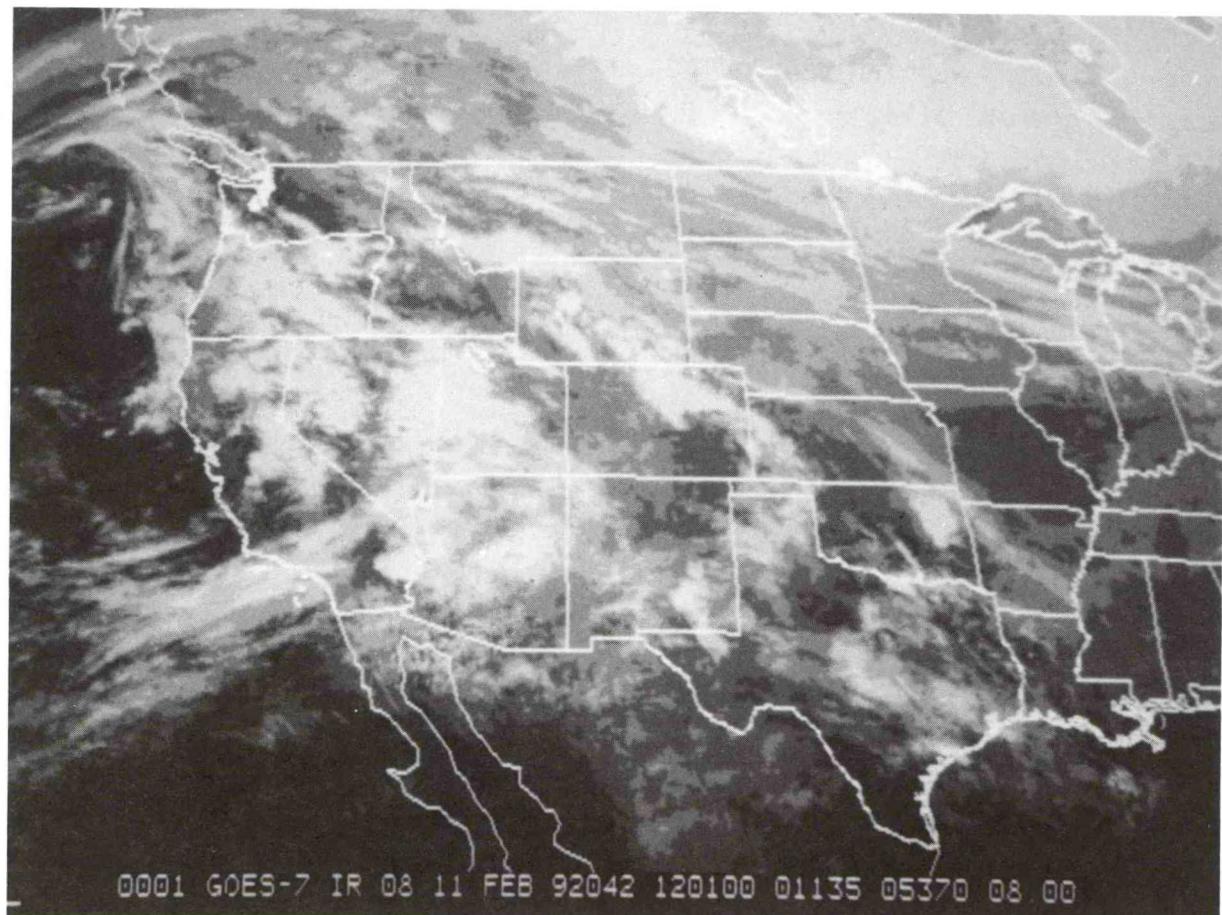
Date: 10 February  
Julian Day: 41

Time (UTC)

| DATA TYPE | SOURCE                | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |  |  |
|-----------|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|--|--|
| IOP       |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
| UPPER AIR | CLASS                 |    |    |    |    |    |    |    |    |    |    | 1  |    | 1  |    | 8  |    | 9  |    | 10 |    |    |    |    |    |    |  |  |
|           | NWS (Inner)           | 22 |    |    |    |    |    |    |    | 10 |    |    |    | 21 |    | 21 |    | 21 |    | 21 |    |    |    |    |    | 22 |  |  |
|           | NWS(Outer)            | 11 |    |    |    |    |    |    |    |    |    |    |    | 11 |    |    |    |    |    |    | 11 |    |    |    |    |    |  |  |
|           | Picket Fence          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | Canadian              | 9  |    |    |    |    |    |    |    |    |    |    |    |    | 9  |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | Ft. Sill              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | Flatlands             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | Seneca                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | HIS                   |    | 1  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | BL Profiler (RASS) ←  |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 2  |    |    |    |    |    |    |    |    |    |    |  |  |
|           | BL Profiler (Winds) ← |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 4  |    |    |    |    |    |    |    |    |    |    |  |  |
| RADAR     | CP-3                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | CP-4                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | Mile High             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | CHILL                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | HOT                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | Cimarron              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | KOUN                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | KFDR                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | KOKC                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | St. Louis             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | Grand Island          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
| AIRCRAFT  | NOAA P-3              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | NCAR KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | UWYO KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | UW C-131              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | NASA ER-2             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
| SATELLITE | GOES RISOP            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |  |
|           | NOAA                  |    | ▲  |    |    |    |    |    |    |    |    |    |    |    |    | ▲  |    |    |    |    |    |    |    |    |    |    |  |  |
|           |                       | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |  |  |

### Comments


|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 33 of 42 stations reported.                             |
|                 | AWOS  | 41 of 47 stations reported; 5 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 8 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported; 2 stations intermittent.    |
|                 | SAO   | 392 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 13 of 13 stations reported; 1 station intermittent.     |


**WEATHER SUMMARY****11 February 1992**

The shallow cold front that was seen yesterday, 10 February, moving into the northern part of the STORM-FEST domain continued to move southward, into the Kansas/Oklahoma area. The western boundary of the front extended back along the Rocky Mountains. A dryline was present over central Texas. A weak warm front was also analyzed on the surface charts extending through central Oklahoma eastward from the dryline. During the initial phase of IOP 5, weak radar echoes were observed over Oklahoma and Texas. Later in the day a band of weak echoes developed through central Kansas and southern Nebraska.

The Eta and NGM models both de-emphasized surface development along the front, supporting the argument that the evolution of system would be a warm frontal wave that would interact with surface cold air over the eastern part of the U.S. However, both these models forecast precipitation totals of  $> 1"$  over northwest Arkansas and adjacent areas. The MM-4 model was different in that although it forecasted that the surface front would refocus over northern Oklahoma this afternoon 11 February, with precipitation in southeast Oklahoma (as did the other models), it began to intensify a north-south surface trough through central Oklahoma later in the forecast period.

TUESDAY, FEBRUARY 11, 1992





**OPERATIONS SUMMARY****11 February 1992**

IOP 5 began at 0000 UTC and was scheduled to continue through 1200 UTC, tomorrow (12 February). The objectives of this IOP were to study the precipitation associated with the two fronts, the merging of the fronts, resulting frontogenesis, and the structure of the lee-side trough. The following events occurred as part of this IOP:

0000 UTC The NWS outer domain soundings began and were scheduled to continue for 12-hrs. The NWS Inner domain and CLASS soundings continued from IOP 4 with the official beginning for IOP 5 at 0000 UTC and were expected to continue until 1200 UTC tomorrow (12 February).

1200 UTC RISOP (Rapid Scan Satellite) began and was scheduled to continue to 1200 UTC (12 February).

1548 UTC The University of Washington C-131, took off and flew in the two rainbands just south of the Kansas/Oklahoma border. The aircraft made three passes between Richards-Gebaur AFB and Ardmore, Oklahoma. The first leg was flown at 10 kft., the second leg at 7 kft., the third (partial) leg was flown at 4 kft. before the aircraft had to return to Richards-Gebaur AFB. Most of the convection in the line, was below 15 kft., although there were a few towering cumulonimbus in the lines.

1830 UTC The NOAA P-3 took off and climbed to 20 kft. heading west along the Kansas/Oklahoma border, dropping dropwindsondes to explore the structure of the lee side trough. The aircraft then headed south and east passing over Oklahoma City. It flew along an east-west line of convection at 15 kft, from Oklahoma to western Arkansas. The tail Doppler radar documented the wind structure in the convective system. At 0230 UTC (12 February) the aircraft flew legs between Tulsa, Oklahoma and central Missouri, which was along the most intense convection in the band. During this period the aircraft was struck by lightning, damaging the on-board experimental HF communication system. On the northeast leg of the pattern, dropwindsondes were launched from 22 kft. The return leg to Richards-Gebaur AFB was flown at 15 kft. to continue documenting of the structure of the convection in the band using the Doppler radar. The aircraft landed at

Richards-Gebaur AFB at 0440 UTC, 12 February.

2240 UTC The University of Wyoming King Air took off and flew south to the warm front to sample the moist southerly inflow air into the system. The strongest inflow was thought to be in eastern Texas, where the aircraft conducted a limited LAD experiment. The aircraft landed at Tulsa for refueling where it encountered severe weather (lightning, freezing rain). The aircraft took off again at 0620 UTC (12 February) and flew back to Richards-Gebaur AFB. (Icing was reported at Richards-Gebaur AFB although no ice was observed on the runway.) On landing in Topeka and on return to Richards-Gebaur AFB, the aircraft obtained excellent measurements in strong freezing rain.

2240 UTC CP-3 and CP-4 radars began to collect data. Only second trip echoes were observed at this time. Precipitation over the radars occurred during the passage of a convective band between 0200 and 0800 UTC, 12 February. The CP-4 radar was inoperative during several penetrations of the NCAR aircraft on 12 February, although both radars were operating during the earliest and latest penetrations.

Radar data were also collected by the WSR-88D radars in Oklahoma. The WSR-88D radar at Oklahoma City began collecting Archive II level data at 0000 UTC and the WSR-88D radar at Norman began collecting Archive II data at 0600 UTC. The warm front moving north from the Red River area of Oklahoma interacted with the weak arctic front along the Kansas-Oklahoma border developing nocturnal convection in southcentral and southeastern Oklahoma on the 11th and 12th, which persisted throughout the day. However, all significant convection occurred in the eastern half of Oklahoma and only a few very light showers affected the Little Washita basin, which recorded only a trace of precipitation. Data were collected from two disdrometers and the ARS rainguage network in the Little Washita Watershed. KFDR and NSSL's Cimarron radars were inoperative. Digitized WSR-57 radar data were recorded at St. Louis beginning at 0000 UTC.

## STORM-FEST HOURLY COLLECTION OF DATA

Date: 11 February

Julian Day: 42

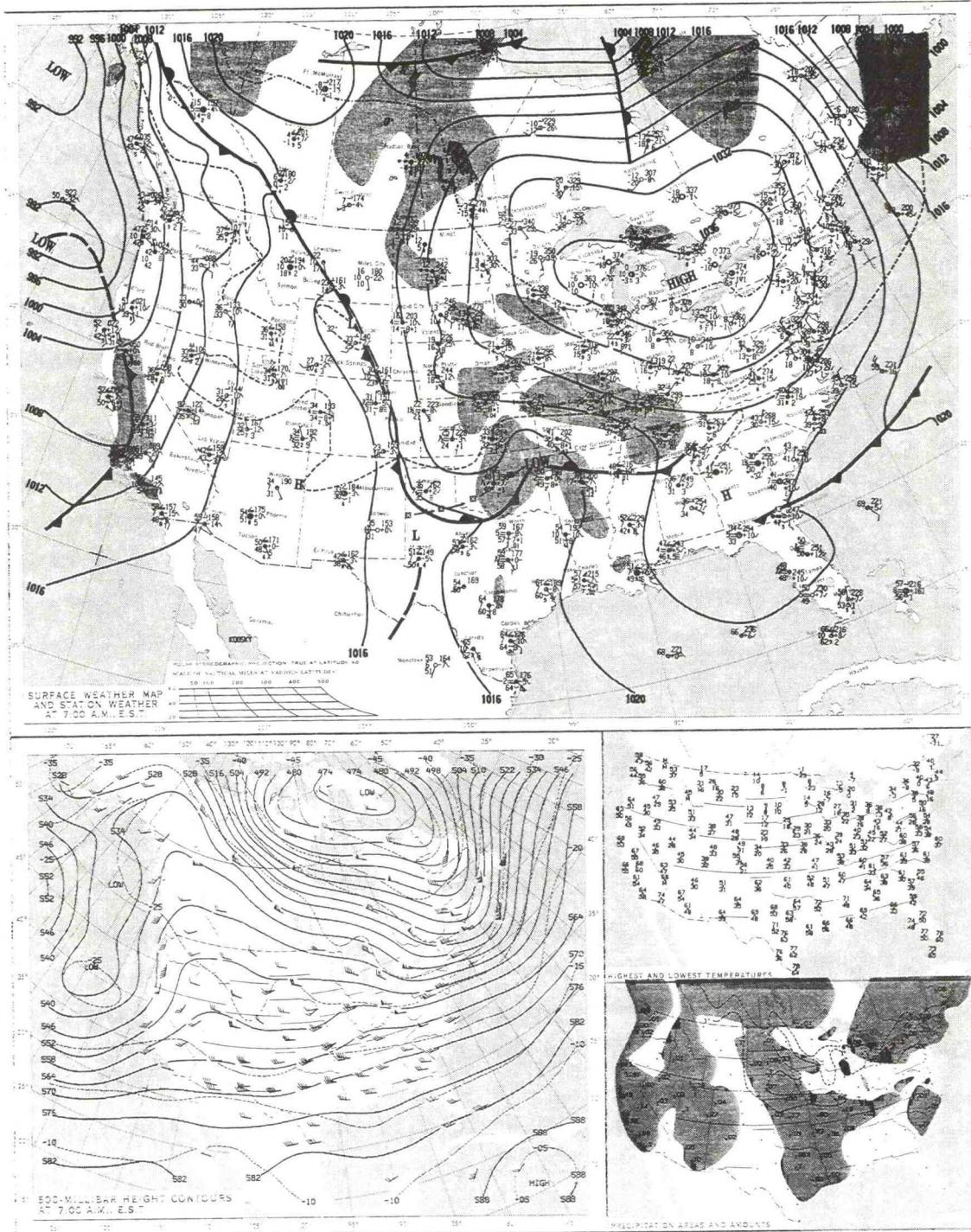
Time (UTC)

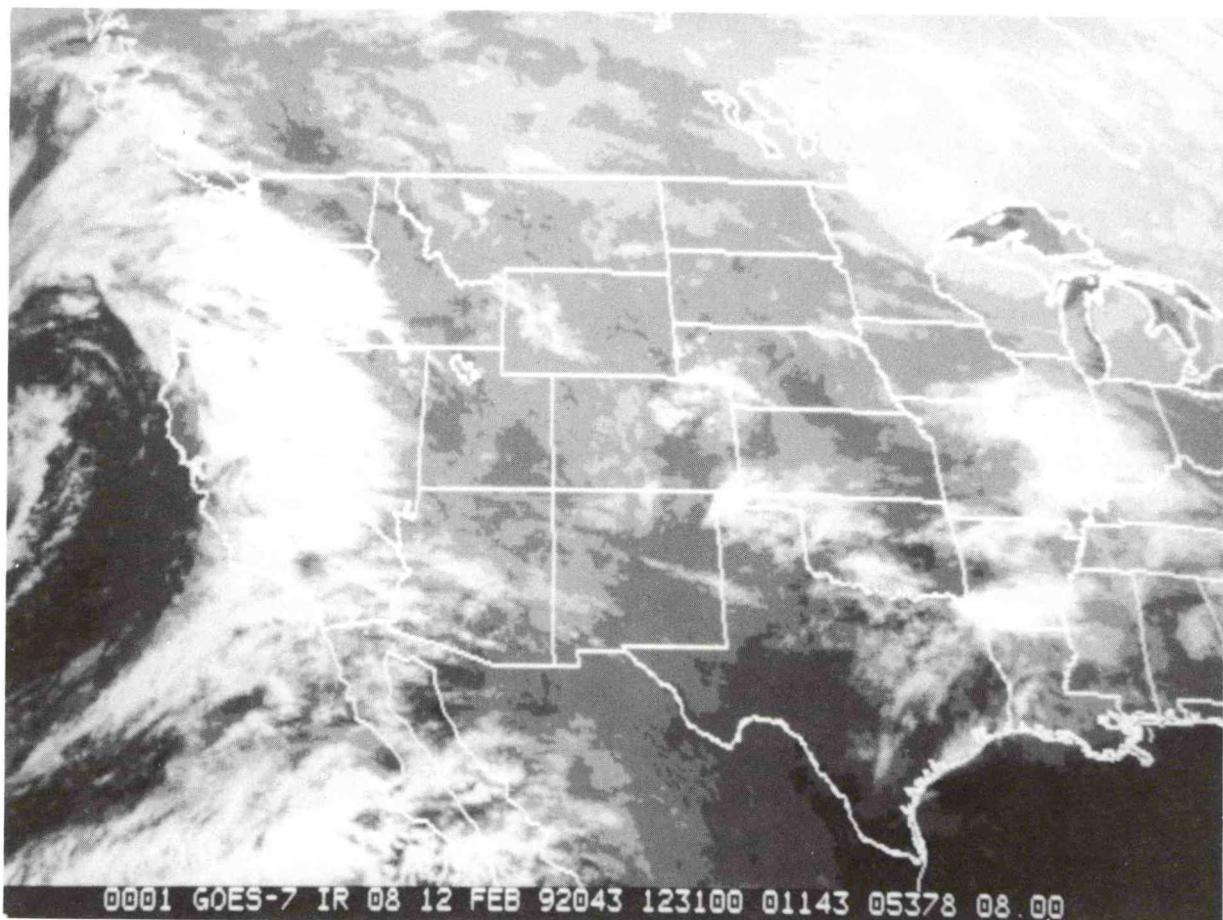
| DATA TYPE | SOURCE                | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14     | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|--------|----|----|----|----|----|----|----|----|----|----|
| IOP       |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    | IOP #5 |    |    |    |    |    |    |    |    |    |    |
| UPPER AIR | CLASS                 | 10 |    | 10 |    | 10 |    | 10 |    | 10 |    | 10 |    | 10 |    | 10     |    | 10 |    | 10 |    | 10 |    | 10 |    |    |
|           | NWS (Inner)           | 21 |    | 22 |    | 22 |    | 22 |    | 22 |    | 22 |    | 22 |    | 22     |    | 22 |    | 22 |    | 22 |    | 22 |    |    |
|           | NWS(Outer)            | 11 |    |    |    |    |    | 11 |    |    |    |    |    |    |    |        | 11 |    |    |    |    |    |    |    |    |    |
|           | Picket Fence          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | Canadian              | 9  |    |    |    |    |    |    |    |    |    |    |    |    |    |        | 9  |    |    |    |    |    |    |    |    |    |
|           | Ft. Sill              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | Flatlands             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | Seneca                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | HIS                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | BL Profiler (RASS) ←  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        | 4  |    |    |    |    |    |    |    |    |    |
|           | BL Profiler (Winds) ← |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        | 4  |    |    |    |    |    |    |    |    |    |
| RADAR     | CP-3                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | CP-4                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | Mile High             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | CHILL                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | HOT                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | Cimarron              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | KOUN                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | KFDR                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | KOKC                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | St. Louis             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | Grand Island          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
| AIRCRAFT  | NOAA P-3              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | NCAR KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | UWYO KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | UW C-131              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | NASA ER-2             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
| SATELLITE | GOES RISOP            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | NOAA                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

## Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 33 of 42 stations reported.                             |
|                 | AWOS  | 46 of 47 stations reported; 5 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 13 stations intermittent.   |
|                 | PROFS | 21 of 22 stations reported; 2 stations intermittent.    |
|                 | SAO   | 389 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 13 of 13 stations reported; 2 stations intermittent.    |


**WEATHER SUMMARY****12 February 1992**


The convective system that has been the focus of IOP 5 continued to move to the east. The band of convection that had developed over central Kansas and southern Nebraska moved eastward passing over the dual Doppler radar array in Kansas between 0200 and 0600 UTC. Precipitation from this band fell initially as rain, but changed to freezing rain around 0600 UTC. By the time the band had passed over Kansas City, trees and cars were coated with several millimeters of ice, qualifying this storm as a light to moderate ice storm event.

By 1200 UTC, a weak surface low pressure area had developed along the front in eastern Oklahoma, with most of the precipitation located north of the front. This system continued to move to the east with only very light precipitation occurring in the eastern part of the STORM-FEST domain.

Last night's 72-h AVN model had forecast strong cyclogenesis for 0000 UTC (15 February). Based on this prog, an IOP might be called for Friday night. However, the 0000 UTC AVN forecast for 60-h showed this system to be much weaker, as well as there being a lot of disagreement between all models at 48-h. The results was that there was a chance of an excellent weather event friday night, but due to the amount disagreement in the models this was a difficult decision to make at this time.

WEDNESDAY, FEBRUARY 12, 1992



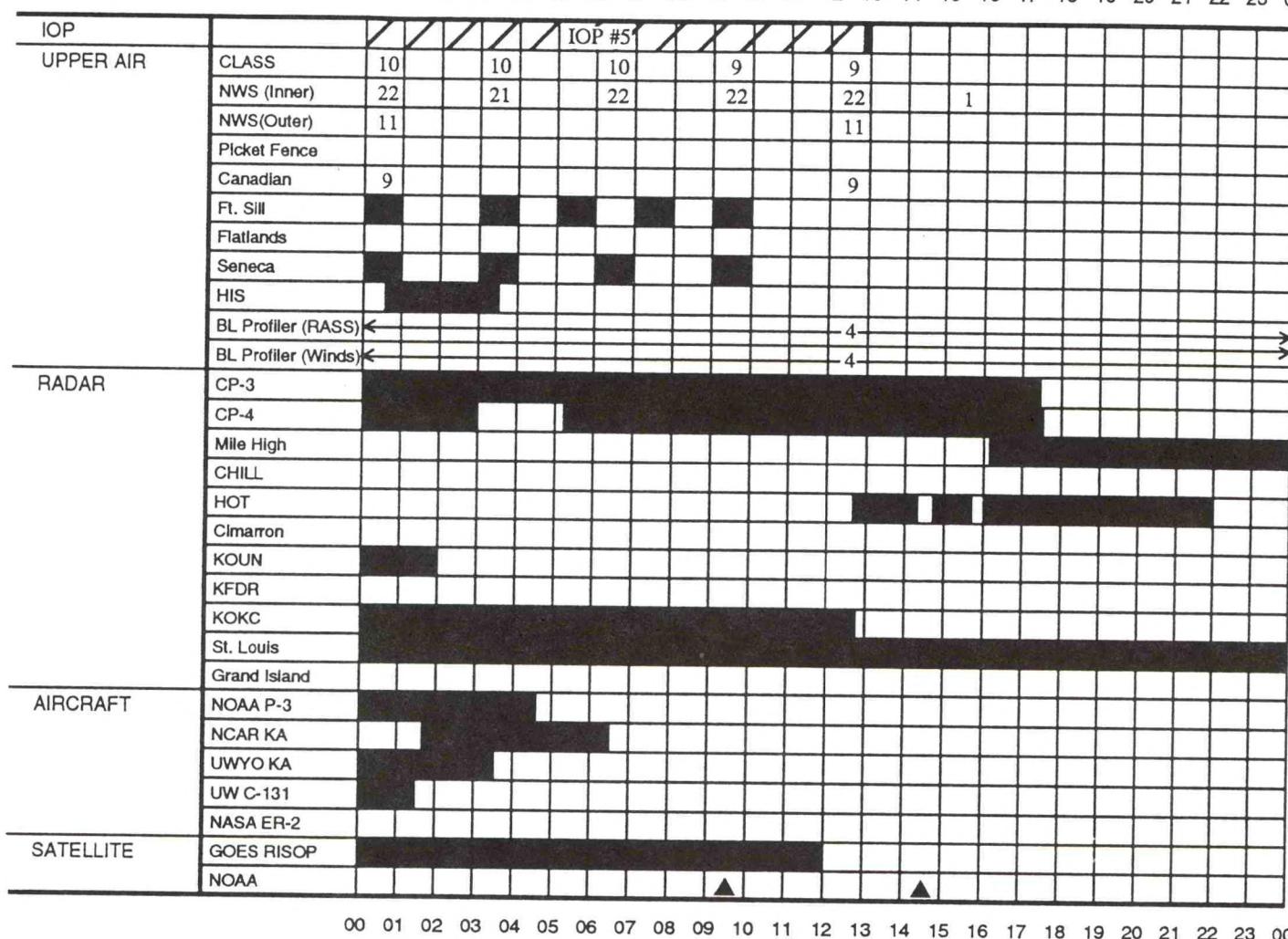


## OPERATIONS SUMMARY

12 February 1992

IOP 5 continued officially until 1200 UTC today, 12 February, after a very active day yesterday, 11 February. The CP-3 and CP-4 Doppler radars continued operations until 1722 UTC, collecting data on light precipitation that was still occurring in the area. The HOT radar also collected data on this system through 2200 UTC.

The only activities that occurred today; not discussed as part of the aircraft missions on 11 February, and the operations of the radars, was an NCAR King Air flight that took off at 0203 UTC to investigate the structure of a rainband that was moving over the CP-3 and CP-4 dual Doppler radar area. The NCAR King Air aircraft took off and flew stacked legs in the precipitation band that had moved into the Kansas dual Doppler radar area. Penetration legs were flown at 18k, 15k, 12k, 9k, 6k and 3 kft. Since there was extensive freezing rain in the area, the aircraft collected good data on freezing rain on its landing at Richards-Gebaur AFB at 0619 UTC.


## STORM-FEST HOURLY COLLECTION OF DATA

Date: 12 February

Julian Day: 43

Time (UTC)

| DATA TYPE | SOURCE | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

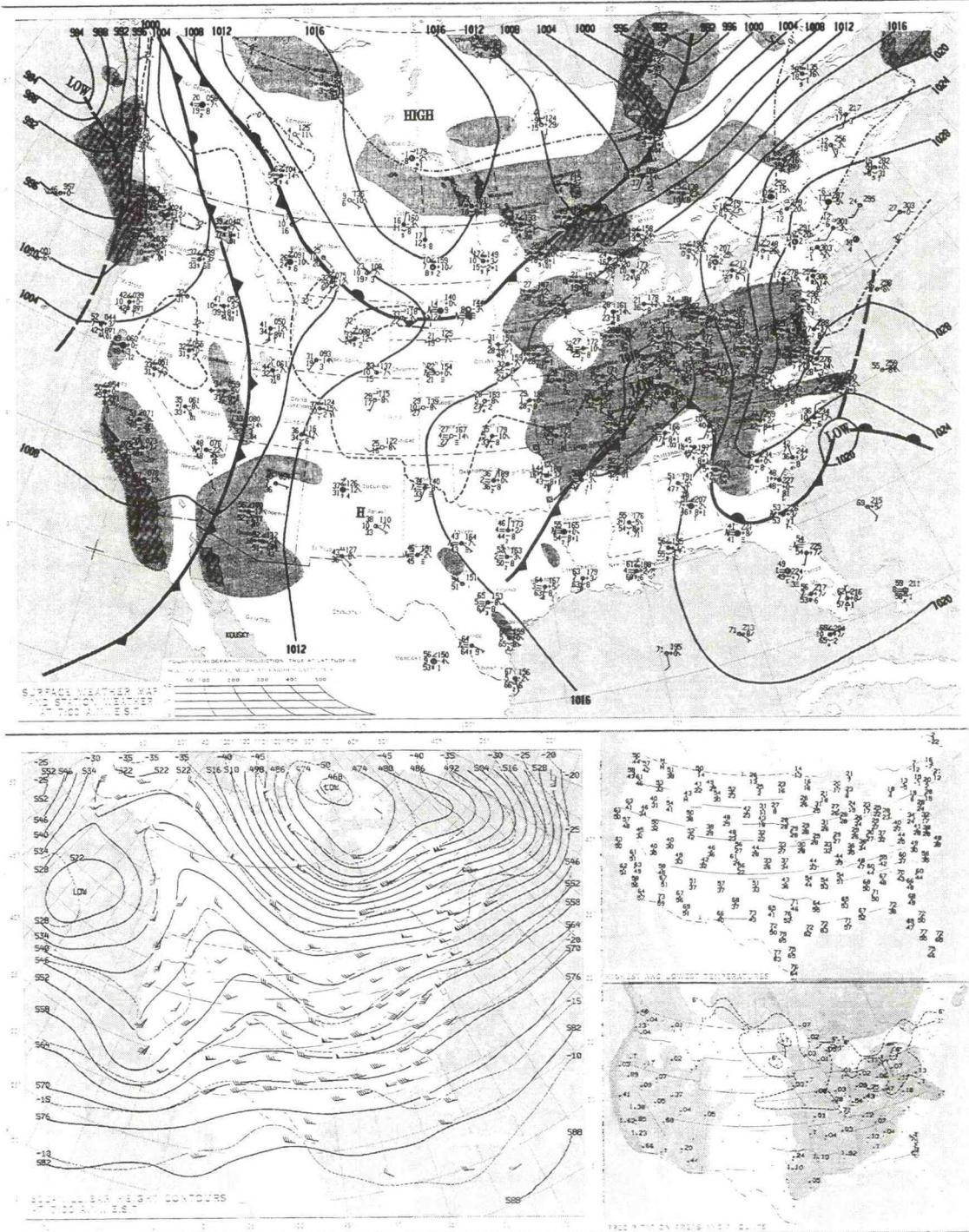


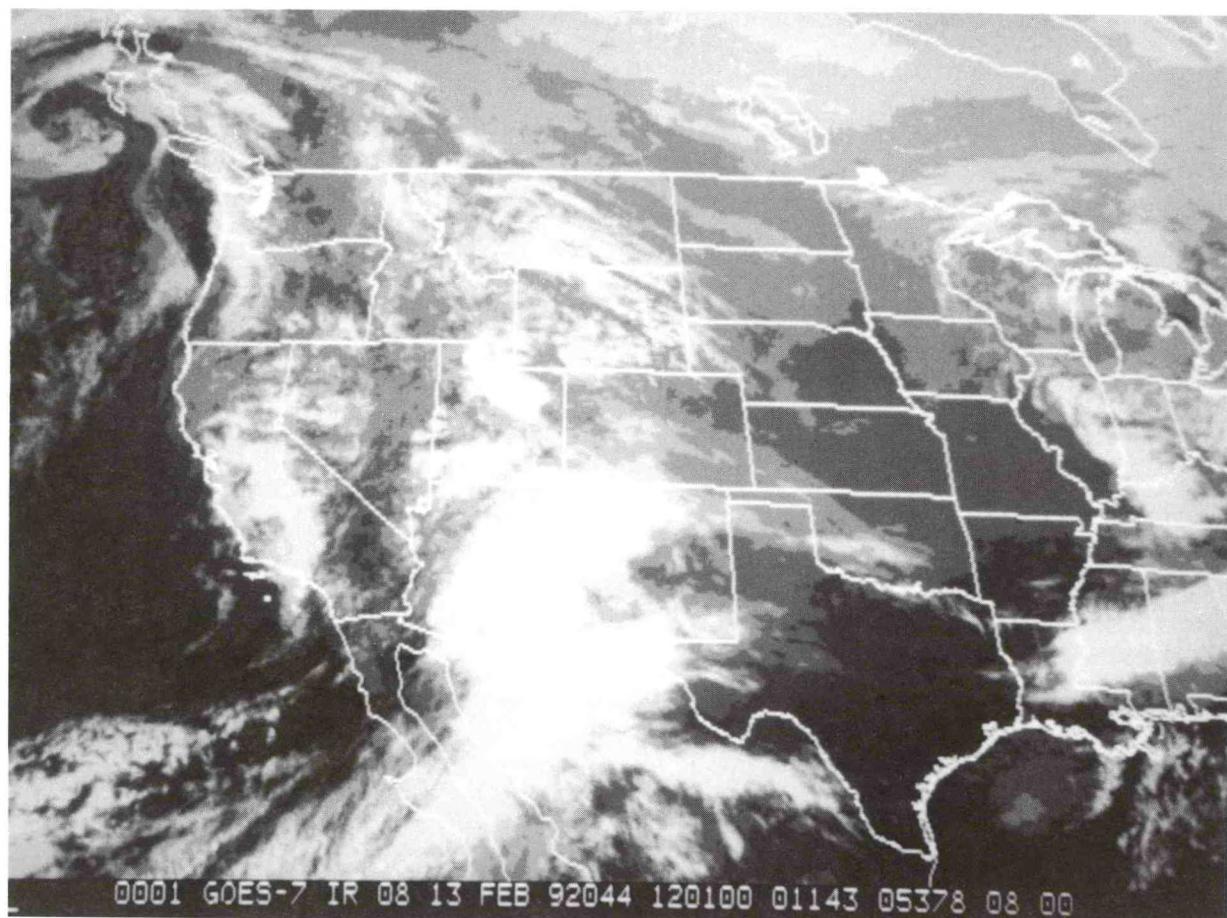
|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

## Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 33 of 42 stations reported; 1 station intermittent.     |
|                 | AWOS  | 46 of 47 stations reported; 6 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 11 stations intermittent.   |
|                 | PROFS | 21 of 22 stations reported; 1 station intermittent.     |
|                 | SAO   | 393 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported.                             |

**NOTES:**


**WEATHER SUMMARY****13 February 1992**


The storm system that was the focus of IOP 5 continued to move to the east and at 1200 UTC was located over Indiana with a cold front extending southwest over central Arkansas and eastern Texas. A second cold front was beginning to move into the northern portion of the STORM-FEST domain.

Cyclogenesis was expected to occur in the next 24-h in Colorado. This area was expected to move southeast into southeast Kansas by 1200 UTC, 13 February, and continued to move along the border until 1800 UTC. The cold front could trigger thunderstorms (possibly severe). Stable precipitation could also break out in western Kansas after 0600 UTC, 14 February, and spread across the state through the period. Amounts of precipitation should increase as this system moves into eastern Kansas and Missouri. Thunderstorms should be enhanced by 60° dewpoint air ahead of system and a dry slot at mid-levels. A fairly strong jet streak could also phase in with the development of this system.

Over the Gulf of Alaska a southward moving 500 mb low pressure area supported by a strong northerly jet over the Aleutian Islands was forecast to dig southward to the west coast of the United States. By 60-h the AVN model showed a strong vortex maximum just west of Los Angeles with strong Positive Vorticity Advection (PVA) along the California coast. This feature was forecast to move inland during the day Saturday, 15 February, and could result in a IOP complete with "picket fence" soundings (IOP 7).

THURSDAY, FEBRUARY 13, 1992





## OPERATIONS SUMMARY

13 February 1992

Today was declared a hard down day. West coast "picket fence" soundings began at 0600 UTC to monitor the strong trough and associated weather moving onto the west coast. These soundings were scheduled to continue until 1800 UTC today.

There was a misunderstanding between STORM-FEST Operations and the Naval Post Graduate School on timing of these soundings. This system, although quite strong and bringing a lot of precipitation and high winds to California, was not expected to affect the STORM-FEST domain. STORM-FEST scientists were more interested in the next major wave that was expected to move onto the west coast tomorrow, 14 February. Thus, the NWS outer domain soundings were scheduled to begin at 0000 UTC (14 February) and continue for 48- to 72-h. Thus, Picket Fence soundings were scheduled to begin again at 1800 UTC, tomorrow, 14 February, and continue for 48-h (A 24-h break was required between stop and start times of NWS special soundings).

IOP 6 was scheduled to begin at 0000 UTC tomorrow, 14 February, with the start up of outer domain NWS soundings, to study the short wave and associated precipitation that were forecast to begin moving into the western portion of the STORM-FEST domain.

**STORM-FEST**  
**HOURLY COLLECTION OF DATA**

Date: 13 February  
Julian Day: 44

Time (UTC)

| DATA TYPE | SOURCE | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

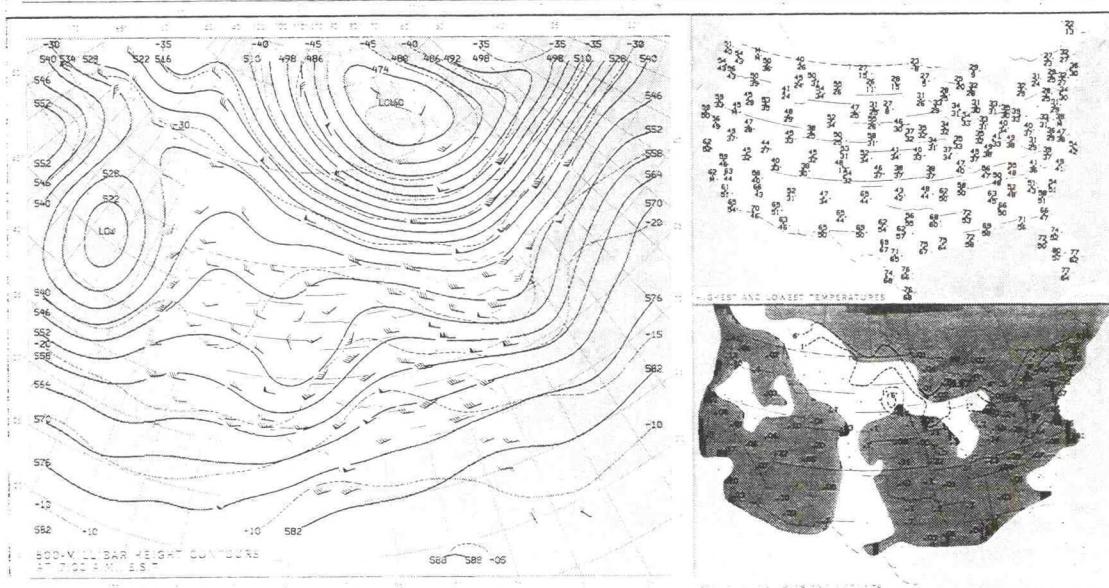
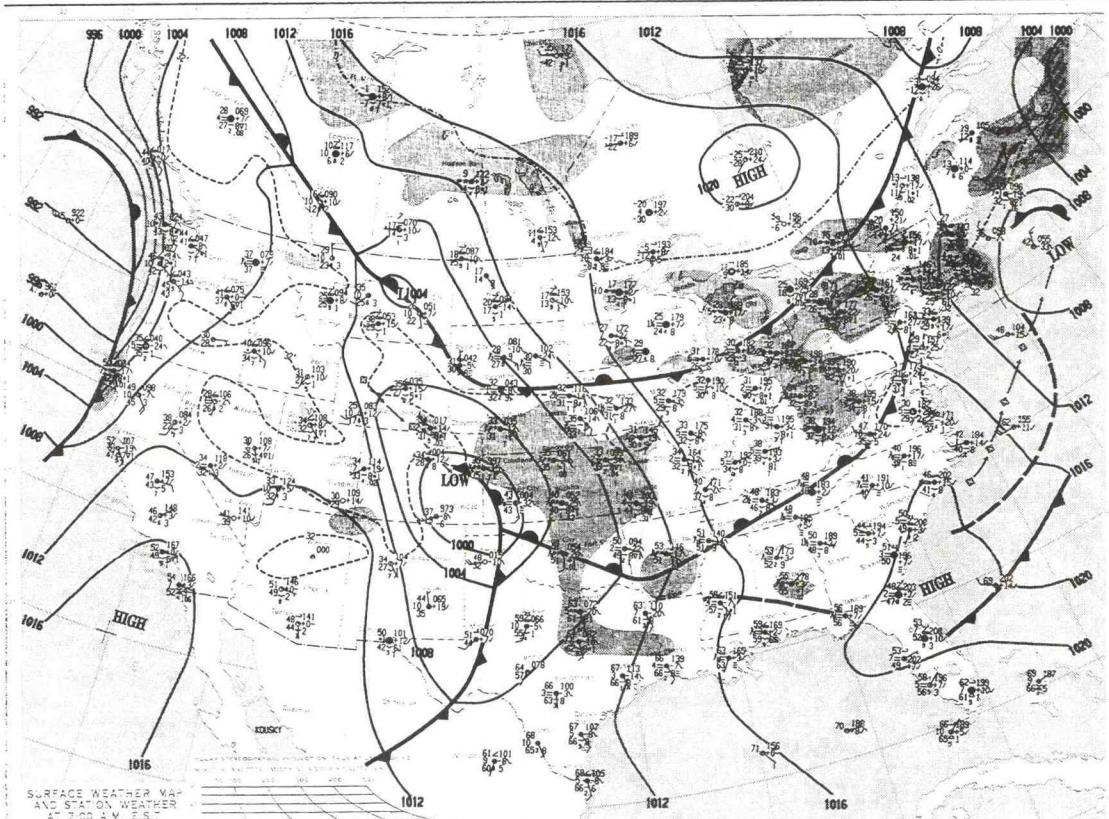
| IOP       |                       |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|-----------|-----------------------|----|---|--|--|--|--|--|--|--|---|--|---|--|--|--|---|----|--|---|--|--|---|--|---|---|
| UPPER AIR | CLASS                 |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|           | NWS (Inner)           | 22 |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   | 22 |  |   |  |  |   |  |   | 1 |
|           | NWS(Outer)            | 10 |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   | 10 |  |   |  |  |   |  |   |   |
|           | Picket Fence          |    |   |  |  |  |  |  |  |  | 8 |  | 9 |  |  |  | 8 |    |  | 9 |  |  | 9 |  |   |   |
|           | Canadian              | 9  |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   | 9  |  |   |  |  |   |  |   |   |
|           | Ft. Sill              |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|           | Flatlands             |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|           | Seneca                |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|           | HIS                   |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|           | BL Profiler (RASS) <  |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   | 4  |  |   |  |  |   |  |   |   |
|           | BL Profiler (Winds) < |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   | 4  |  |   |  |  |   |  |   |   |
| RADAR     | CP-3                  |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|           | CP-4                  |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|           | Mile High             |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|           | CHILL                 |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|           | HOT                   |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|           | Cimarron              |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|           | KOUN                  |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|           | KFDR                  |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|           | KOKC                  |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|           | St. Louis             |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|           | Grand Island          |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
| AIRCRAFT  | NOAA P-3              |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|           | NCAR KA               |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|           | UWYO KA               |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|           | UW C-131              |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|           | NASA ER-2             |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
| SATELLITE | GOES RISOP            |    |   |  |  |  |  |  |  |  |   |  |   |  |  |  |   |    |  |   |  |  |   |  |   |   |
|           | NOAA                  |    | ▲ |  |  |  |  |  |  |  |   |  |   |  |  |  | ▲ |    |  |   |  |  |   |  | ▲ |   |

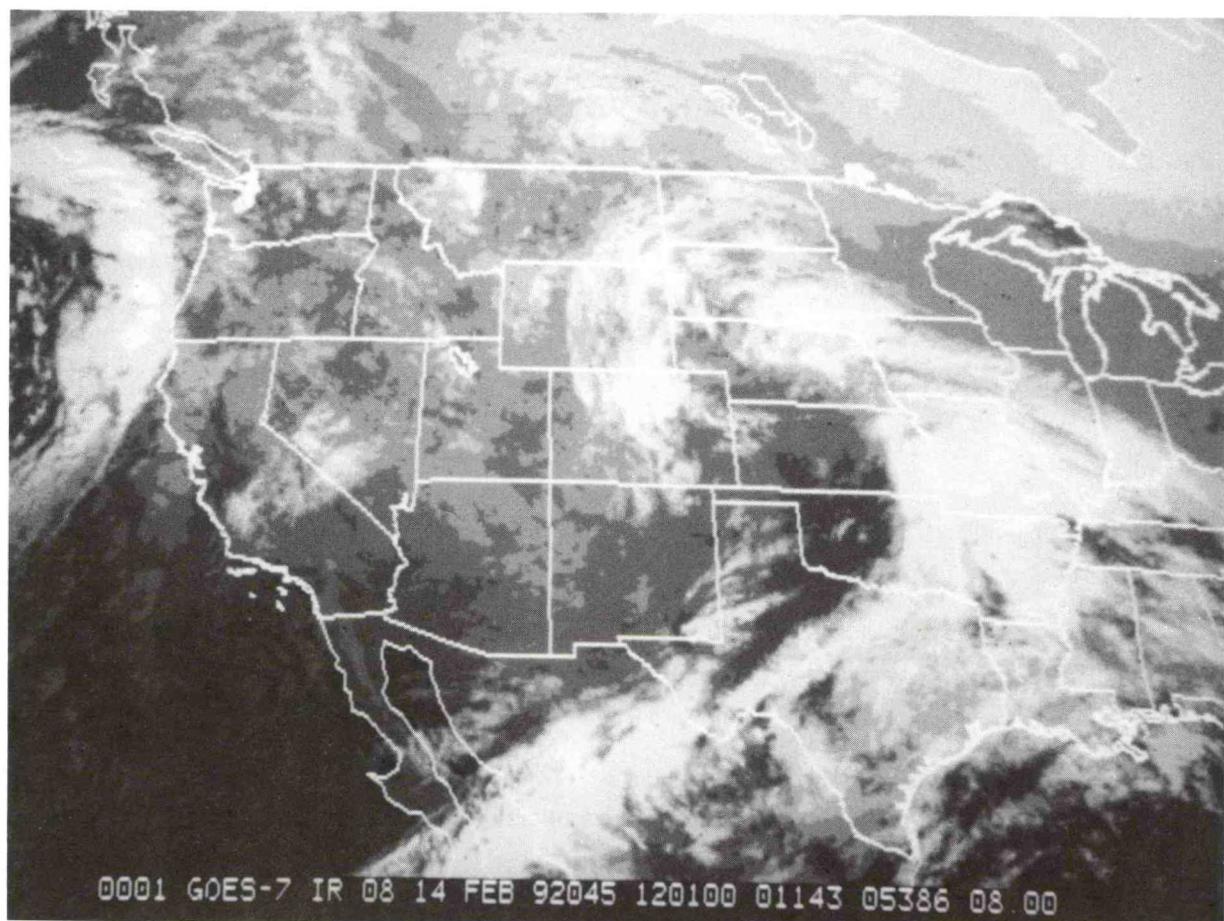
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 33 of 42 stations reported; 1 station intermittent.     |
|                 | AWOS  | 46 of 47 stations reported; 8 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported; 1 station intermittent.     |
|                 | PAM5  | 35 of 35 stations reported; 9 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported.                             |
|                 | SAO   | 392 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported.                             |

**NOTES:**



**WEATHER SUMMARY****14 February 1992**


A large cyclonic storm has developed over the western portion of STORM-FEST domain. The initial precipitation band, that developed along a line from eastern Texas to Nebraska, and later from Arkansas to Iowa, was associated with the eastern progression of the trough. At the surface, the low pressure center was initially located over western Kansas and progressed eastward during the day. A dry line was located over central Texas and the cyclone had a well defined dry slot. A surface warm front was located along the Kansas/Oklahoma border with freezing rain and sleet in the overrunning air north of the Iowa/Missouri border. A sharp cold front developed along the leading edge of the wrap around part of the "comma" cloud pattern and heavy snow was observed at several locations behind the front.

Models supported the rapid movement of the low center into central Missouri by 0600 UTC and Illinois by 1200 UTC, 15 February. Strong warm and cold frontogenesis was expected across central Missouri (warm) and eastern Oklahoma and Kansas (cold). Thunderstorms were expected along the front (Red River area) later in the day. MM4 supported convective precipitation development between 1800 UTC and 0000 UTC in this area. By 1800 UTC (15 February) the low center and front was forecast to exit the STORM-FEST domain, with only wraparound precipitation continuing in Iowa, Illinois, Missouri, and Kentucky.

The outlook for 1800 UTC (15 February) to 1800 UTC (16 February) was for a new cyclonic system to develop over the Rocky Mountains beginning with cyclogenesis in Wyoming. Between 1200 UTC (16 February) and 0000 UTC (17 February) the MRF model forecasted the low to deepen to 999 mb. Toward the end of the 48-h period it was expected there would be a strengthening of the low-level flow out of the Gulf of Mexico and perhaps the initiation of some overrunning precipitation after 0000 UTC (17 February) in the central parts of Oklahoma, Kansas and Nebraska. This new system should be the focus of the next IOP (#7).

FRIDAY, FEBRUARY 14, 1992





**OPERATIONS SUMMARY****14 February 1992**

IOP 6 started at 0000 UTC with supplemental soundings taken from the NWS outer domain sounding sites, continuing until 1200 UTC (these soundings will continue, but will be classified as being for IOP 7). The CLASS sites began soundings at 0600 UTC and the NWS inner domain soundings began at 2100 UTC. The objectives of this IOP were to document the structure and evolution of the warm and cold fronts and the dry line, and to document the structure and dynamics of the mesoscale rainbands in this cyclone.

The NWS outer domain 6-h soundings and the West Coast Picket Fence soundings began at 1800 UTC to monitor the next major wave moving onto the West Coast, which officially started IOP 7. This system was expected to move into the STORM-FEST domain on 16 February.

The following activities were carried out to meet the objectives of IOP 6.

1200 UTC      The GOES-7 Satellite began RISOP mode which was scheduled to continue until 1500 UTC (15 February).

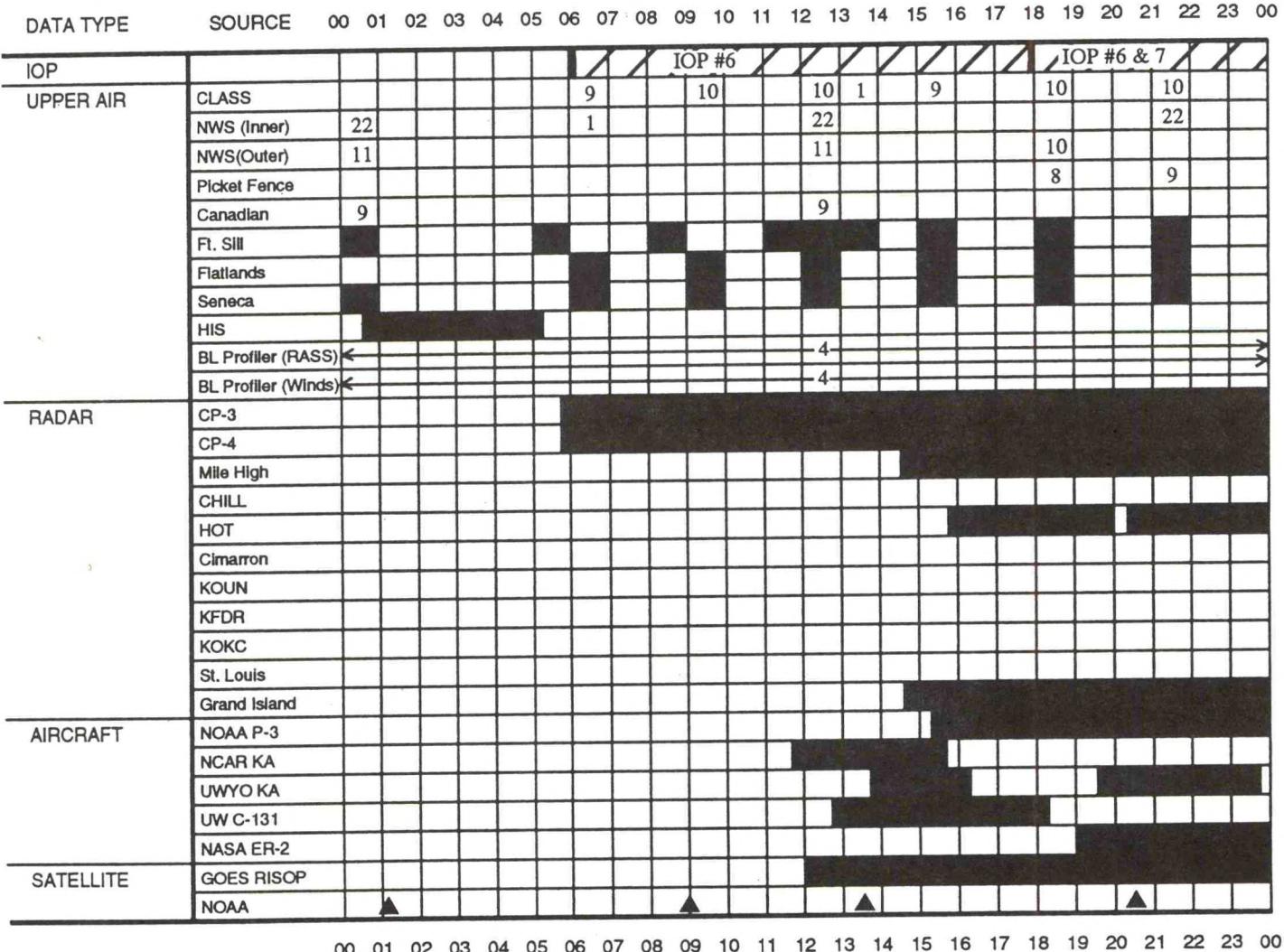
1200 UTC      The NCAR King Air conducted a dropwindsonde mission over the Kansas dual Doppler radar area. Four dropwindsondes were released (two successfully). The aircraft also made a pass through the convection at 17 kft. The aircraft landed at Richards-Gebaur AFB at 1540 UTC.

1300 UTC      The University of Washington C-131 took off to fly flight patterns perpendicular to the warm front precipitation band located in Iowa/Kansas. The aircraft completed 4 tracks between 8k and 11 kft. The aircraft stayed at these high altitudes because of the threat of freezing rain. The aircraft landed at Richards-Gebaur AFB about 1800 UTC.

1530 UTC      The NOAA P-3 took off to investigate the structure of the warm front located over central and eastern Missouri. The first part of the flight was a saw tooth pattern at 5 kft. along the front. The aircraft then climbed to 15 kft. and flew southward to north-central Arkansas releasing dropwindsondes across the front. After the dry line penetration, the P-3 turned northeast to return to the warm front, but the

aircraft was caught between two lines of developing severe convection and turned back to Tulsa. The aircraft then flew at 5 kft. to sample the wrap around cold front that was located northwest of Tulsa. The aircraft performed a stacked penetration in the cold front, one at 5 kft. and the second at 8 kft. The aircraft then returned to Richards-Gebaur AFB because of deteriorating weather conditions at Kansas City, landing at 0010 UTC (15 February).

1905 UTC The NASA ER-2 flew from Houston (its Operation Base) on its first STORM-FEST mission. The aircraft made two transects at 60 kft. across the upper level trough and a "predicted" tropospheric fold. The scientific objective of this mission was to measure total ozone column below 60 kft. using the Wildfire Infrared Scanner. Also on board were the AMPR, LIP, and MTS instruments. The HIS instrument was not available. The two tracks ran from 36°N 93°W to 36°N 100°W and 38°N 100°W to 38°N 93°W. One significant event was the over-flight of probable gravity waves in eastern Kansas and eastern Oklahoma. The aircraft returned to Houston at 0025 UTC (15 February).


1921 UTC The University of Wyoming King Air took off to investigate the structure of the exit region of the upper level jet located over north central Oklahoma and Kansas. The aircraft climbed to 30 kft. and flew to a point over central Oklahoma where it began to carry out a parcel tracking mission; measuring the deceleration of the jet in the diffluent region downstream of the jet core. Because of restricted military airspace, the aircraft was not able to do a complete mission. The aircraft then attempted to fly an "M" surface, but had to abort the mission because of deteriorating weather conditions at Kansas City. The aircraft landed at Kansas City Metro Airport at 2350 UTC.

CP-3 and CP-4 began operations at 0600 UTC and continued to operate until 0400 UTC, 15 February. The HOT radar began recording data at 1430 UTC and continued intermittently until 1200 UTC, 15 February, as the system exited the STORM-FEST domain.

**STORM-FEST**  
**HOURLY COLLECTION OF DATA**

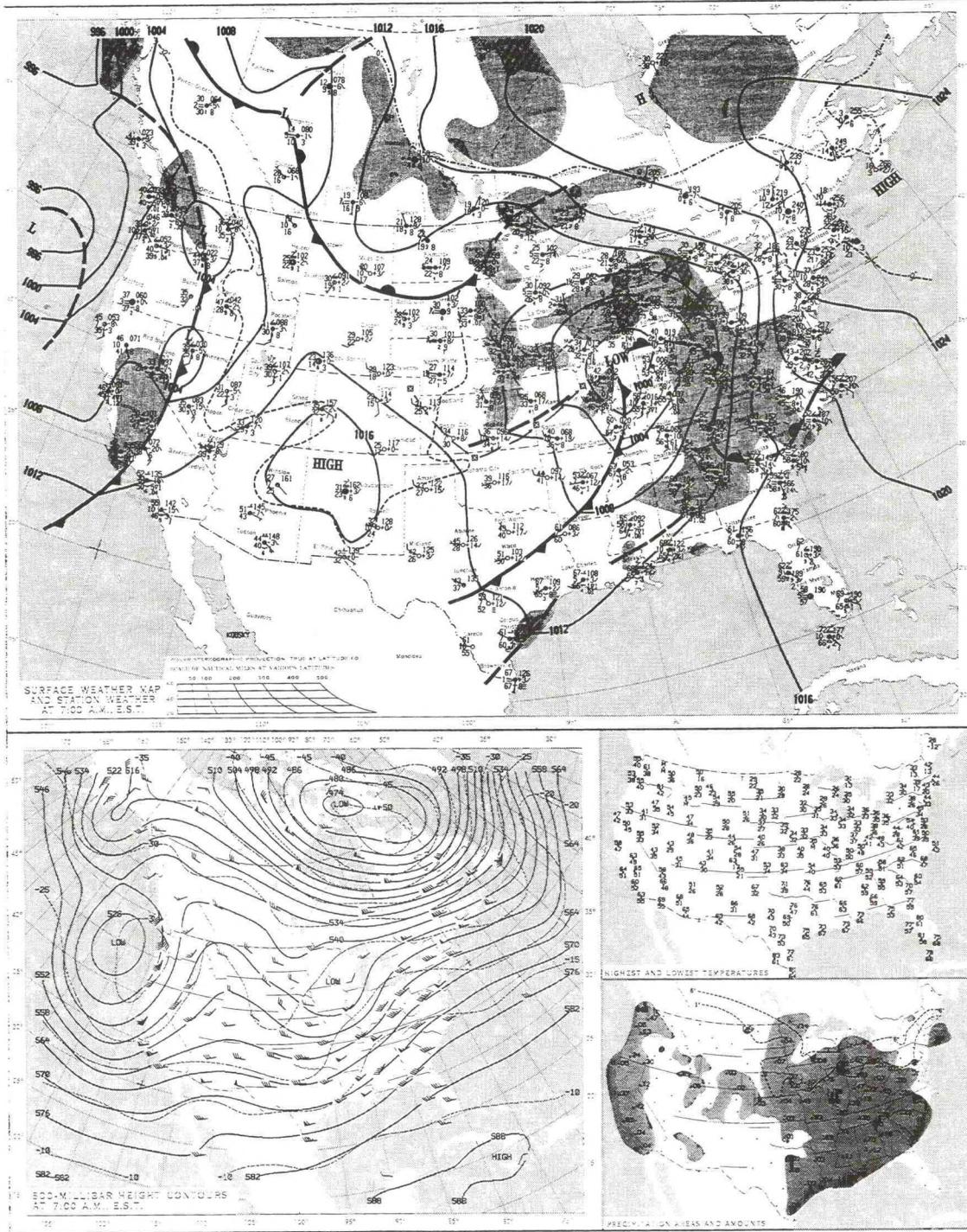
Date: 14 February  
Julian Day: 45

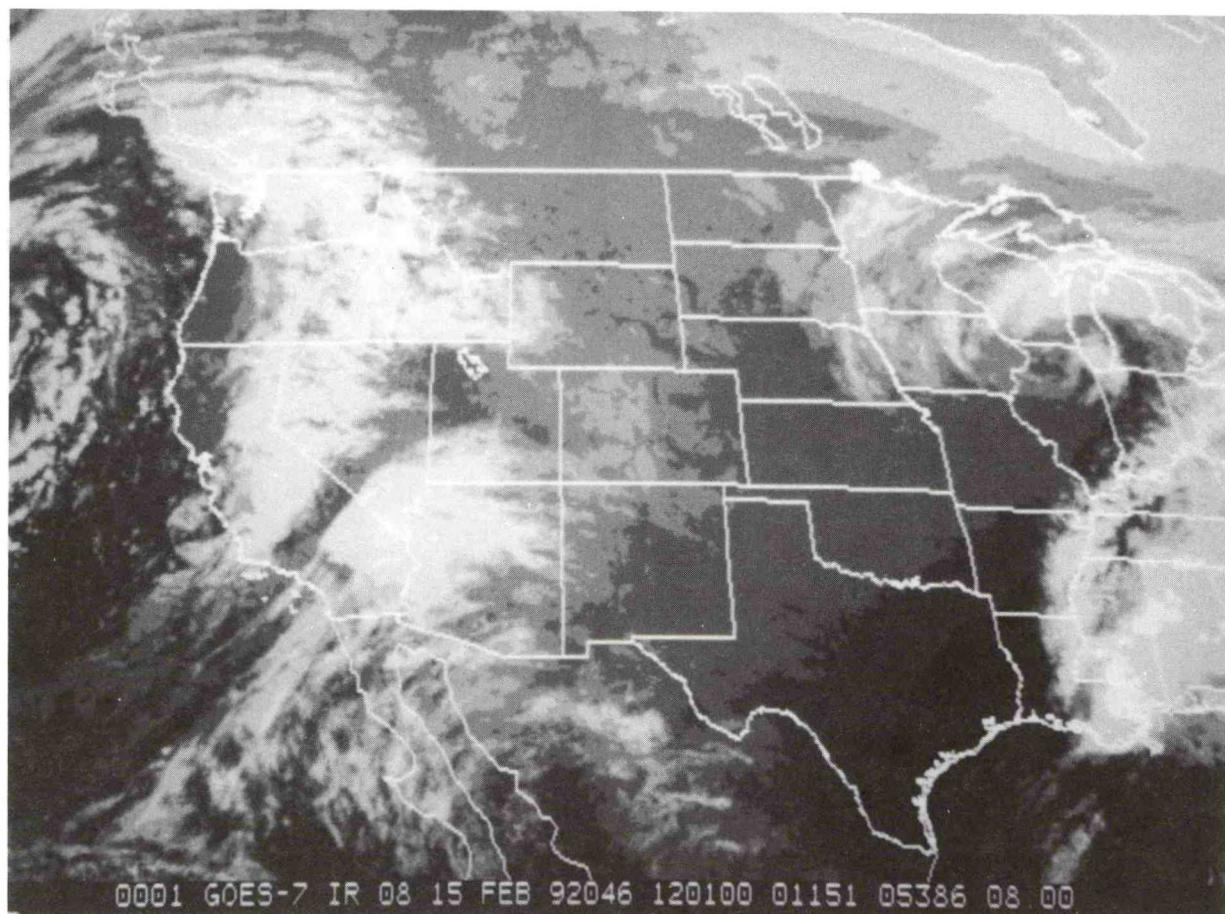
Time (UTC)



00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

Comments


|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 33 of 42 stations reported; 1 station intermittent.     |
|                 | AWOS  | 46 of 47 stations reported; 7 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported; 1 station intermittent.     |
|                 | PAM5  | 35 of 35 stations reported; 3 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported.                             |
|                 | SAO   | 398 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported.                             |


**WEATHER SUMMARY****15 February 1992**

The surface low pressure area that moved over the STORM-FEST domain on 14 February and produced the various weather scenarios that were sampled by the aircraft and radars, continued to move to the east and at 1200 UTC was located over Illinois. Severe weather associated with this system included strong convection, lightning, tornado (on Arkansas/Missouri border), freezing rain in Iowa and about a 1/2 inch of rain in Kansas City.

Along the west coast, a surface front was located over eastern Washington and Oregon, central Nevada, and southern California. It was expected that a low center would develop along the southern extent of the front and move into the western STORM-FEST domain on 16 February. This was one more in the series of cyclonic systems that had rotated around the bottom of the trough that has been located off the west coast for the past several weeks.

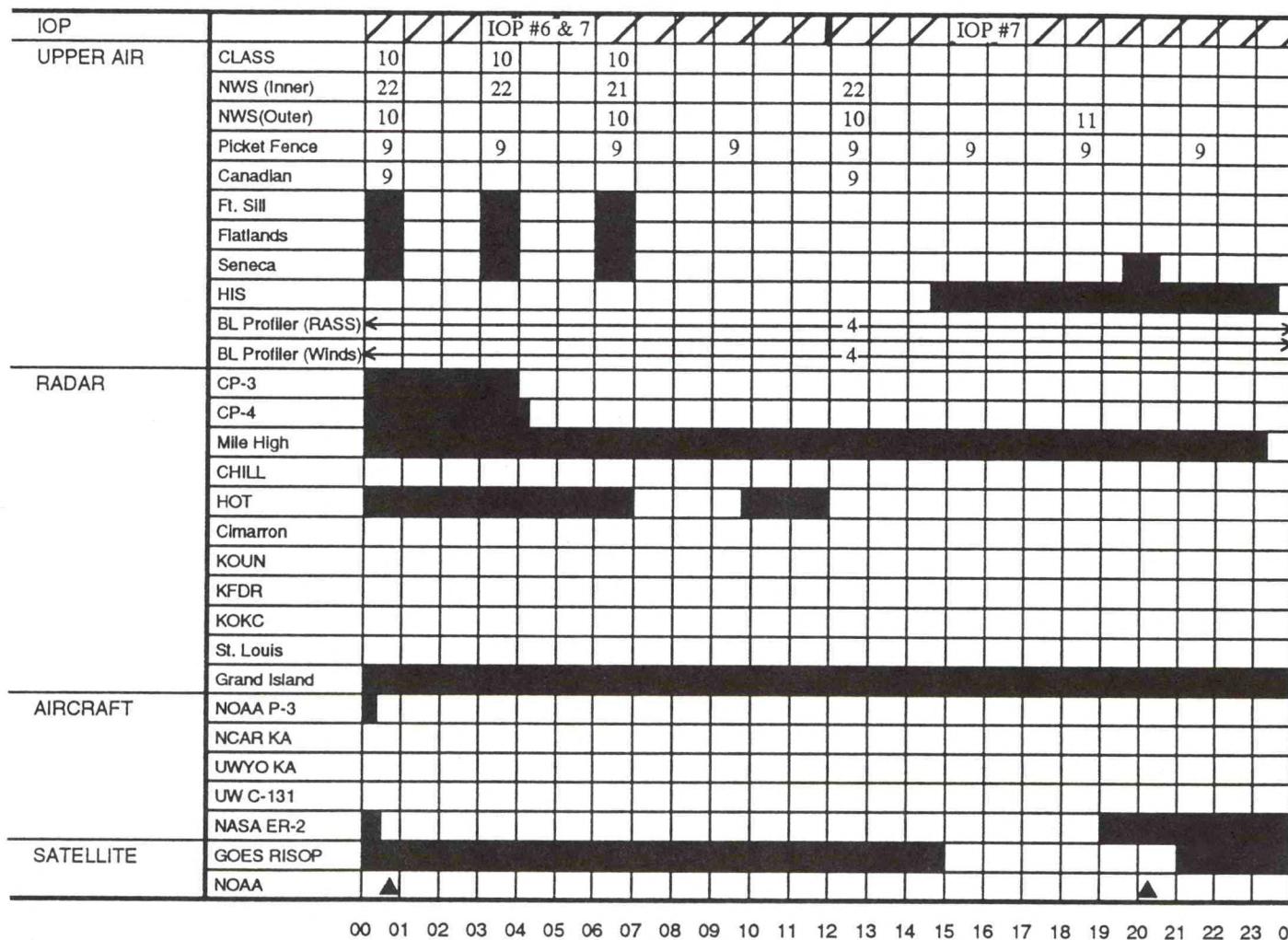
SATURDAY, FEBRUARY 15, 1992





## **OPERATIONS SUMMARY**

**15 February 1992**


IOP 6 ended at 0600 UTC with the end of CLASS and NWS inner domain soundings. IOP 7 continued with Picket Fence and NWS outer domain soundings being taken to monitor the wave moving into the west coast and the associated cold front moving into the inner mountain west. Activities were expected to begin within the STORM-FEST domain at 1200 UTC tomorrow, 16 February, to study the structure and dynamics of the front and the development of the low pressure area that was forecast to move into the western portion of the STORM-FEST domain. No other operations occurred today.

## STORM-FEST HOURLY COLLECTION OF DATA

Date: 15 February  
 Julian Day: 46

Time (UTC)

| DATA TYPE | SOURCE | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|



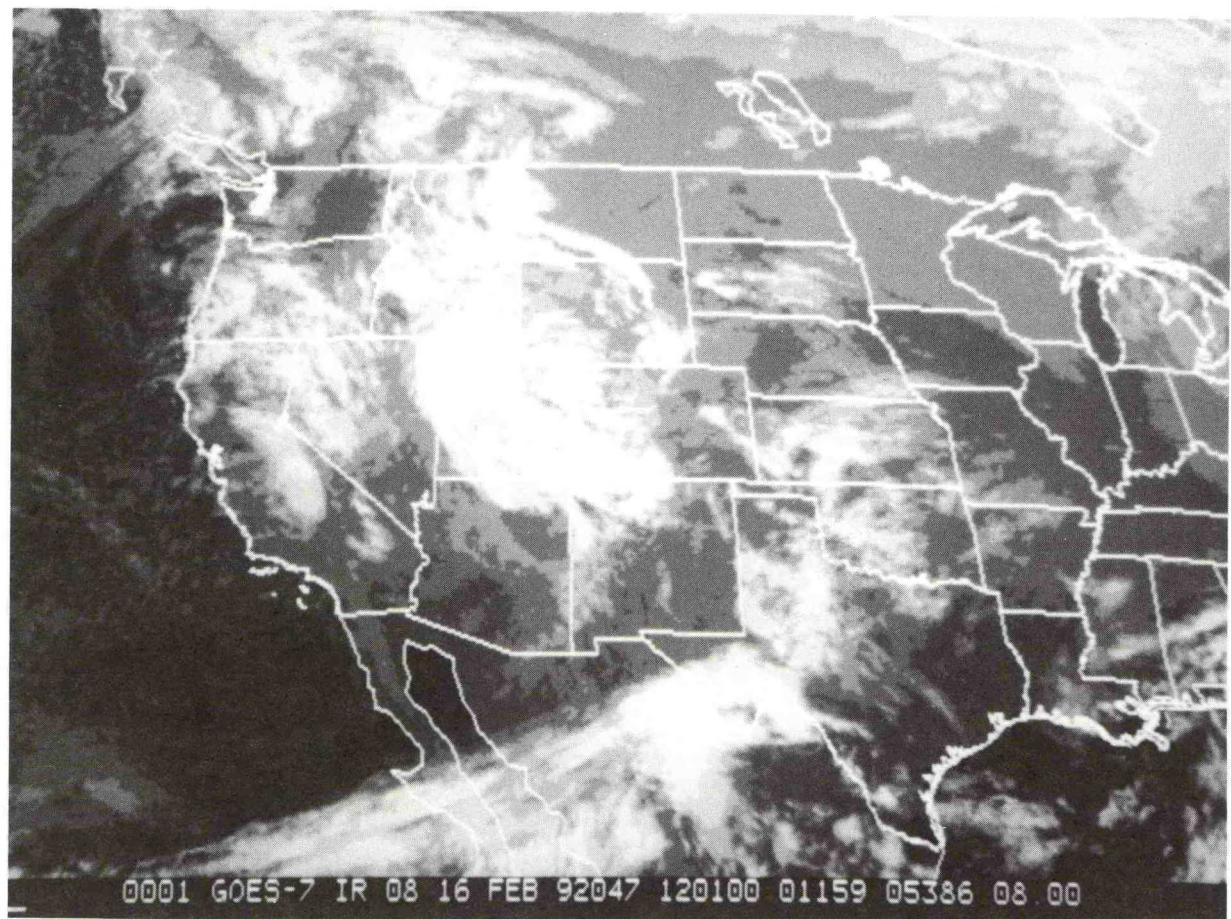
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 33 of 42 stations reported; 1 station intermittent.     |
|                 | AWOS  | 46 of 47 stations reported; 6 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 5 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported.                             |
|                 | SAO   | 391 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported.                             |

**NOTES:**


**WEATHER SUMMARY****16 February 1992**


The surface low pressure area, that was predicted yesterday to develop along the front moving into the STORM-FEST domain, developed over the Utah/Colorado border and moved eastward throughout the day. It was expected that precipitation would develop as the system moved into more favorable environment.

The models (NGM, MM4, Eta) were in good agreement the regarding movement of the low pressure center that should be near Akron, CO, at 1800 UTC. Three boundaries were of interest: a pacific cold front in the western Texas Panhandle, a polar front in northeast Nebraska, and a dryline in the central Texas Panhandle. The low was forecast to track to the east across northern Kansas, with the cold front pushing across Oklahoma from about 0000 UTC to 1800 UTC, 17 February. The cold front should overtake the dryline about 1200 UTC. Consensus was that precipitation, (not breaking out until after around 1200 UTC) would develop ahead of and north of the low in Kansas and Nebraska, and in the warm advection ahead of the front in northeast Texas and Arkansas. Polar air, now in the northern plains, should move into northern Oklahoma by the end of the period. Strong frontogenesis should develop along the Pacific front in eastern Kansas and Missouri between 1200 and 1800 UTC tomorrow (17 February). Also cold frontogenesis should occur between 0600 and 1800 UTC in west Kansas.

The outlook for 1800 UTC, 17 February, to 1800 UTC, 18 February, was for the low to weaken and continue to move to the northeast into Illinois. Cold air should continue to sweep southeastward merging with the Pacific front by 1200 UTC, 18 February. Cold advection should be minimal through the remaining part of the period in the STORM-FEST domain. Wraparound precipitation could continue with snow likely in Nebraska, Iowa, and Wisconsin. Thunderstorms could break out during the beginning of the period and possibly become severe in southern Missouri and Arkansas through 0600 UTC, 18 February. There was very little vertical tilt with this system after 1200 UTC, 17 February, but strong winds and the arrival of gulf moisture could provide enough kick to have significant thunderstorm development.

SUNDAY, FEBRUARY 16, 1992





**OPERATIONS SUMMARY****16 February 1992**

Supplemental observations for IOP 7 within the STORM-FEST domain started at about 1200 UTC with the launch of soundings from the CLASS and NWS sites. The objectives of this IOP were to: 1) study the structure of the dryline and Pacific cold front during their merger early in the storm, 2) study the structure and evolution of frontal systems and associated rainbands and, 3) study the structure of the low pressure center vortex.

The following operations were conducted today in support of IOP 7

1800 UTC "Picket Fence" and NWS outer domain soundings end.

1852 UTC The University of Washington C-131 departed Richards-Gebaur AFB to investigate the structure of the cold front/dry line entering the western STORM-FEST region. After the aircraft took off it began to conduct porpoise soundings on the way out to the Initial Point, but shortly after takeoff, it developed engine problems and had to land in Wichita, Kansas.

2100 UTC NWS Inner domain soundings began.

The CP-3 and CP-4 radars became operational to monitor the various precipitation bands that moved over the dual-Doppler radar area. The radars operated until 1320 UTC, 17 February.

2143 UTC The NSSL Cimarron Doppler radar began collecting polarization data within rainbands over Oklahoma. The radar collected intermittent data until 0028 UTC, 17 February.

2204 UTC The University of Wyoming King Air took off from Richards-Gebaur AFB to fly "M-surfaces" and low-level jet dynamics near Gage, Oklahoma, for the storm system moving across the Rocky Mountains. After passing the low-level dry line and entering the dry slot ahead of the surface low in eastern Colorado, the aircraft flew south toward Gage, Oklahoma to work with the C-131 (see below). The aircraft did stair step "M-surface" profiles at 15k, 11k and 7 kft. On completion

the aircraft returned to Richards-Gebaur AFB at 3 kft. with the C-131 at 5 kft. On encountering drier conditions the aircraft climbed to 23 kft. to pass over a line of weak convection south of Topeka, Kansas. The aircraft landed at 0307 UTC.

2230 UTC The University of Washington C-131 took off from Wichita, Kansas and carried out "porpoise" maneuvers along the Kansas/Oklahoma border to the cold front/dryline at approximately 100° W. The aircraft did traverses through the region at 1, 3, 5 and 7 kft. AGL. They performed more "porpoise" maneuvers on the return trip to Richards-Gebaur AFB after their tandem flight pattern (of about 20-30 min) with the University of Wyoming King Air. The aircraft landed at 0322 UTC.

The NOAA P-3 also took off at 2230 UTC to 1) document the structure of the Pacific cold front as it moved into the region of the dryline in the Texas panhandle, 2) document the structure of the dryline in northern Texas, and 3) document the structure of rainbands over Oklahoma and within the Kansas City dual-Doppler radar array. After takeoff the aircraft flew to eastern Colorado and headed southeast to the Texas panhandle. The upper-level front was not penetrated (it was later determined that it had not yet reached eastern Colorado). The aircraft then penetrated the dryline in northern Texas-southern Oklahoma and released 12 dropwindsondes to sample the low-level jet and dryline in the same region as the C-131 and Wyoming King Air aircraft. The aircraft flew northwest along a rainband in Oklahoma and then flew northeast to line-up with a rainband passing over the dual-Doppler radar area. Between 0334 UTC and 0530 UTC, the aircraft passed through the rainband at 20, 12 and 8 kft. within the dual-Doppler radar area. The aircraft landed at Richards-Gebaur AFB at 0601 UTC.

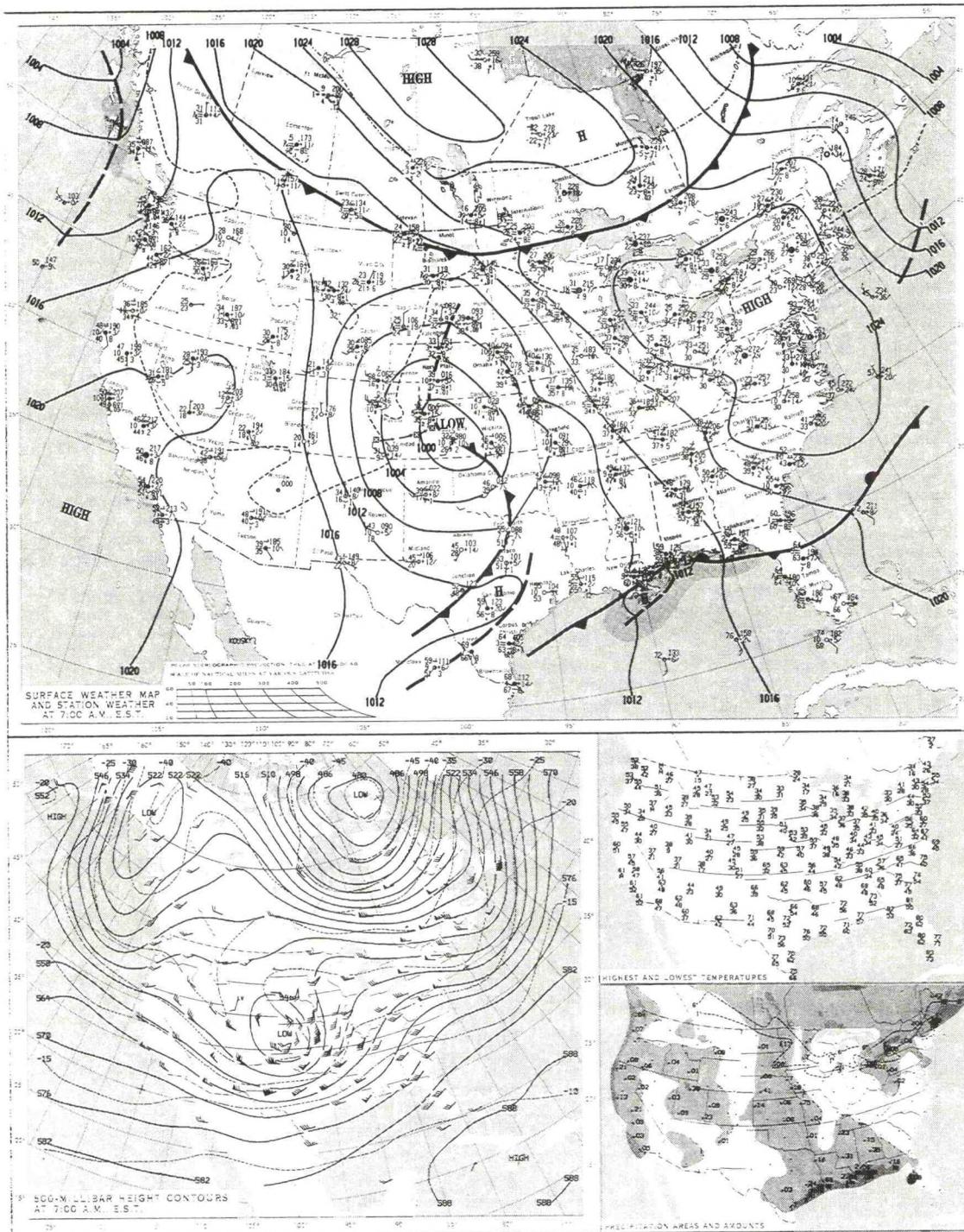
## STORM-FEST HOURLY COLLECTION OF DATA

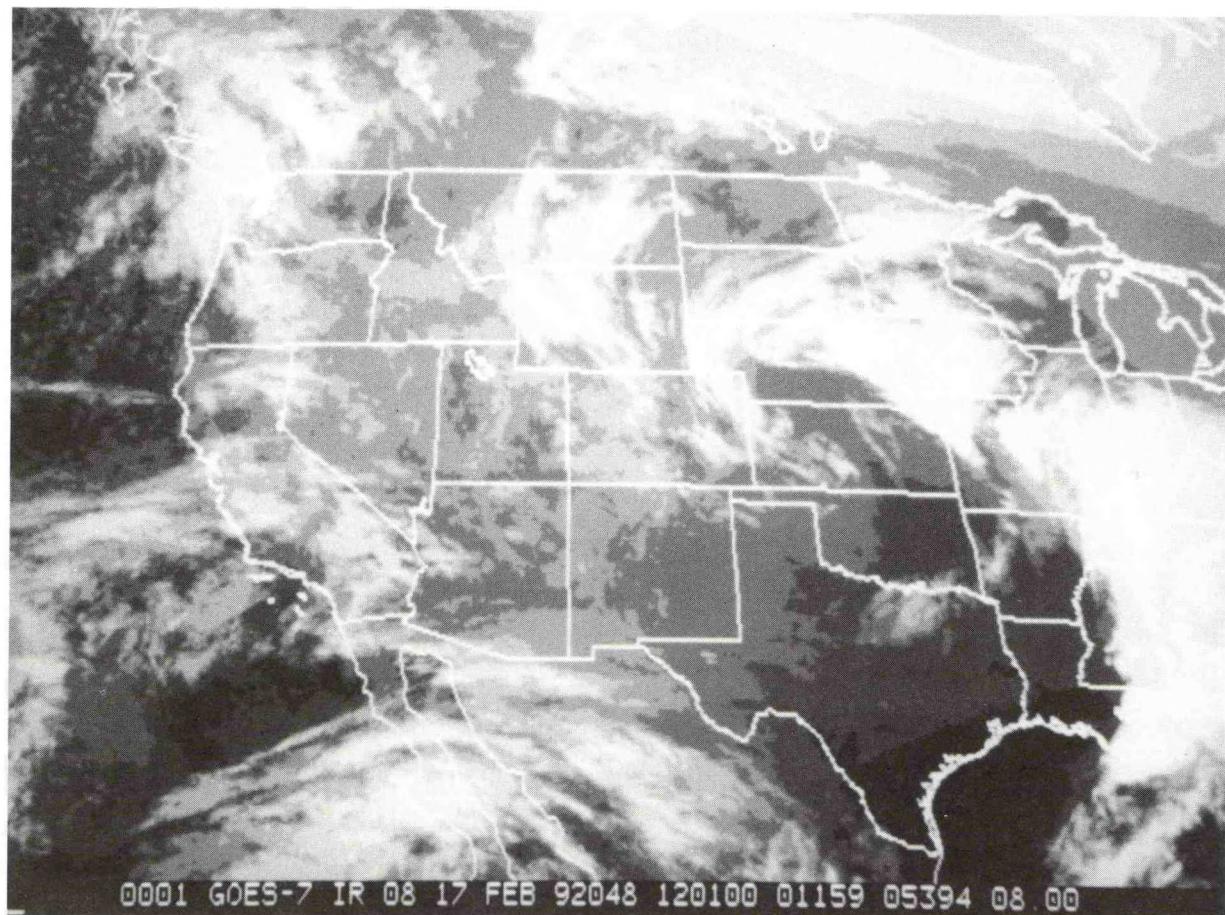
Date: 16 FebruaryJulian Day: 47

Time (UTC)

| DATA TYPE | SOURCE                | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14     | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|--------|----|----|----|----|----|----|----|----|----|----|
| IOP       |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    | IOP #7 |    |    |    |    |    |    |    |    |    |    |
| UPPER AIR | CLASS                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        | 3  |    | 2  |    | 1  |    | 1  |    |    | 1  |
|           | NWS (Inner)           | 21 |    |    |    |    |    |    |    |    |    |    |    |    |    |        | 22 |    | 1  |    | 1  |    |    |    |    | 22 |
|           | NWS(Outer)            | 11 |    |    |    |    |    |    |    |    |    |    |    |    |    |        | 11 |    |    |    |    |    |    |    |    | 10 |
|           | Picket Fence          | 9  |    | 9  |    | 9  |    |    |    | 9  |    |    |    |    |    |        | 9  |    | 4  |    | 4  |    |    |    |    |    |
|           | Canadian              | 9  |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    | 9  |    |    |    |    |    |    |    |    |
|           | Ft. Sill              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | Flatlands             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | Seneca                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | HIS                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | BL Profiler (RASS) ←  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        | 4  |    |    |    |    |    |    |    |    | 3  |
|           | BL Profiler (Winds) ← |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        | 4  |    |    |    |    |    |    |    |    |    |
| RADAR     | CP-3                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | CP-4                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | Mile High             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | CHILL                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | HOT                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | Cimarron              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | KOUN                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | KFDR                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | KOKC                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | St. Louis             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | Grand Island          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
| AIRCRAFT  | NOAA P-3              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | NCAR KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | UWYO KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | UW C-131              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | NASA ER-2             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
| SATELLITE | GOES RISOP            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           | NOAA                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |
|           |                       | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14     | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |

## Comments


|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 33 of 42 stations reported; 1 station intermittent.     |
|                 | AWOS  | 46 of 47 stations reported; 7 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 9 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported; 13 stations intermittent.   |
|                 | SAO   | 384 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported; 1 station intermittent.     |


**WEATHER SUMMARY****17 February 1992**

The cyclone that had been the focus of IOP 7 was located over western Kansas at 1200 UTC, with a central pressure of about 998 mb. The system was vertically stacked with precipitation confined to the north and east quadrants of storm. A band of convection over central Missouri was producing some thunderstorm activity, but this was expected to remain in the eastern portion of the STORM-FEST domain. Wrap around precipitation in this system was the main weather maker with precipitation across Iowa, Nebraska, northwest Kansas and extreme northeast Colorado. There was little in the way of snow, although moderate to heavy rain was located north of the low. All the models were in agreement that the storm would keep its intensity and move slowly to the east. Frozen precipitation should be more common later in the day in the northeast sections of the STORM-FEST domain. Very dry air was pushing into the southern sections of the domain, so no precipitation was expected there.

In the next 36- to 48-h the cyclone should maintain its strength as it slowly moves to the east-northeast. Precipitation should continue in the extreme northeast sections of the STORM-FEST domain. High pressure will settle over the area as this system moves out.

MONDAY, FEBRUARY 17, 1992





**OPERATIONS SUMMARY****17 February 1992**

IOP 7 continued through 17 February. The following activities were carried out to support the IOP.

0000 UTC The NWS outer domain soundings end.

0808 UTC The NCAR King Air took off to fly a stacked pattern within a rainband over the dual-Doppler radar array. The aircraft flew across the southern lobe of the dual Doppler radar area at 20, 15 and 12 kft. The band was convective with occasional lightning. Dropsondes were released from the 20 kft. level, but these were poor in quality, particularly in winds. The low-levels of the band were sampled on approach to Richards-Gebaur AFB. The aircraft landed at 1103 UTC.

1320 UTC The CP-3 and CP-4 terminated operations with no precipitation observed in the area. The radars restarted operations at 1830 UTC when another convective band moved into the area. The radars continued operations until about 1030 UTC (18 February).

2103 UTC The ER-2 departed Houston and flew two horizontal legs at 60 kft. across the upper-level trough present over the STORM-FEST area. Data on the total ozone column below 60 kft. were obtained using the Wildfire Infrared Scanner. Data were also acquired by the AMPR, LIP, and MTS instruments. The HIS instrument was unavailable on this flight. The two flight legs were approximately 35°N 98°W to 35°N and 89°W to 37°N 98°W. The ER-2 also made a flight pass over the ocean off the Texas coast to provide calibration data for all instruments. The aircraft landed at 0328 UTC (18 February).

2235 UTC The University of Wyoming King Air took off to study the inverted trough in Nebraska, but on climb out the mission was changed to study the surface low that was passing directly over Kansas City, Missouri. [The C-131 was called up to conduct the inverted trough mission.]

The aircraft flew cyclonically around the cyclone at 10K, 5K, and 15 kft. The weather in the center of this mature extratropical cyclone was benign, but there was enough low-level precipitation for the dual-Doppler radars to be effective, so that multiple observing system comparison tests could be accomplished.

A unique aspect of this data set was that the cyclone center passed over the boundary layer wind profilers and RASS systems with dual Doppler radar and PAM coverage and in-situ aircraft observations. This should provide an unprecedented data set in this region of a continental cyclone.

2358 UTC      The University of Washington C-131 took off for a third mission in the IOP to study the structure of the inverted trough in south central Nebraska. The aircraft flew stacked legs at 7k, 5k and 4 kft. The aircraft then flew to Beatrice, Nebraska and flew a full leg across the trough at 5 kft. and a half leg at 4 kft. On return to Richards-Gebaur AFB it passed through a rainband in the dual-Doppler radar array. The aircraft landed at 0600 UTC (18 February).

## STORM-FEST HOURLY COLLECTION OF DATA

Date: 17 February

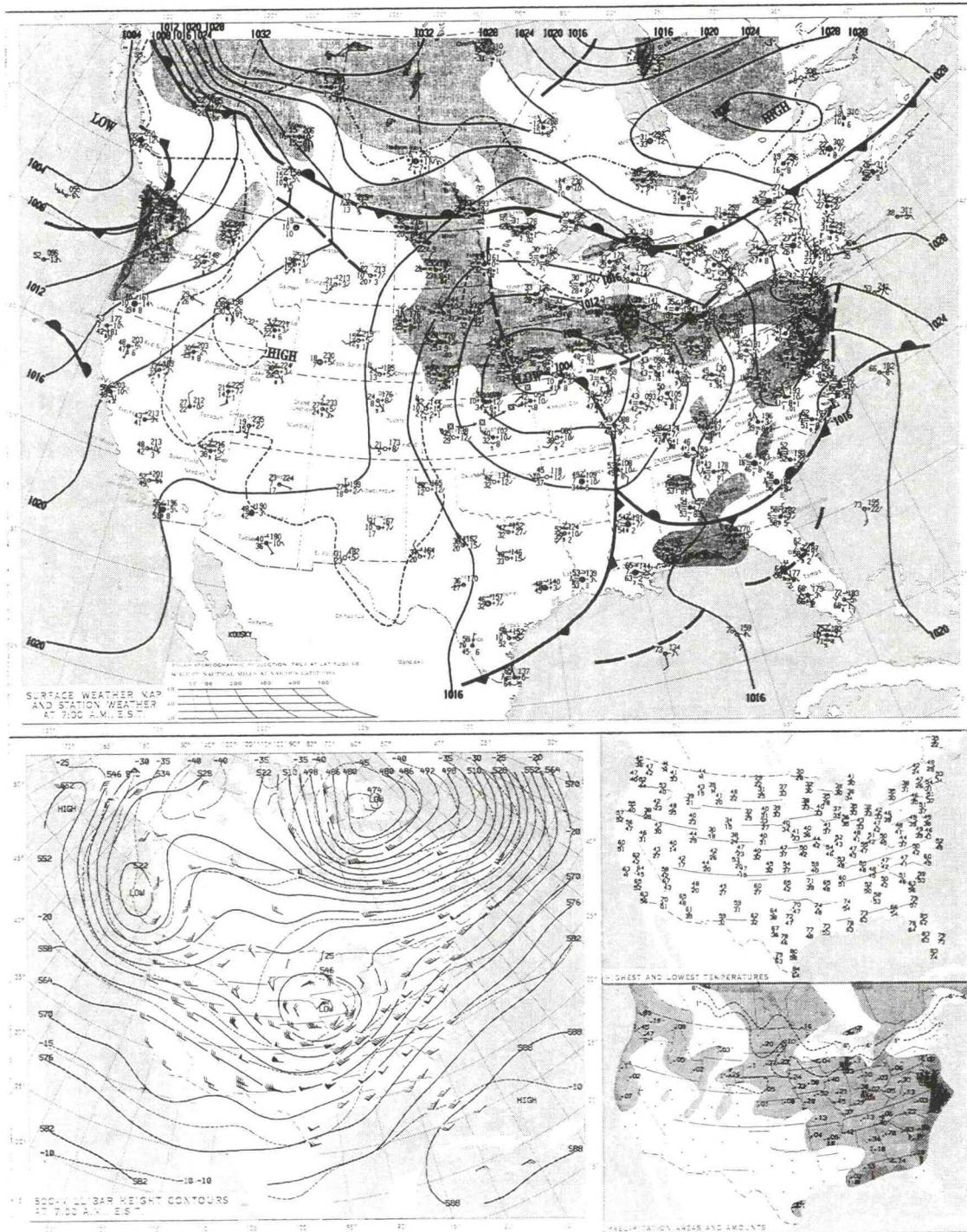
Julian Day: 48

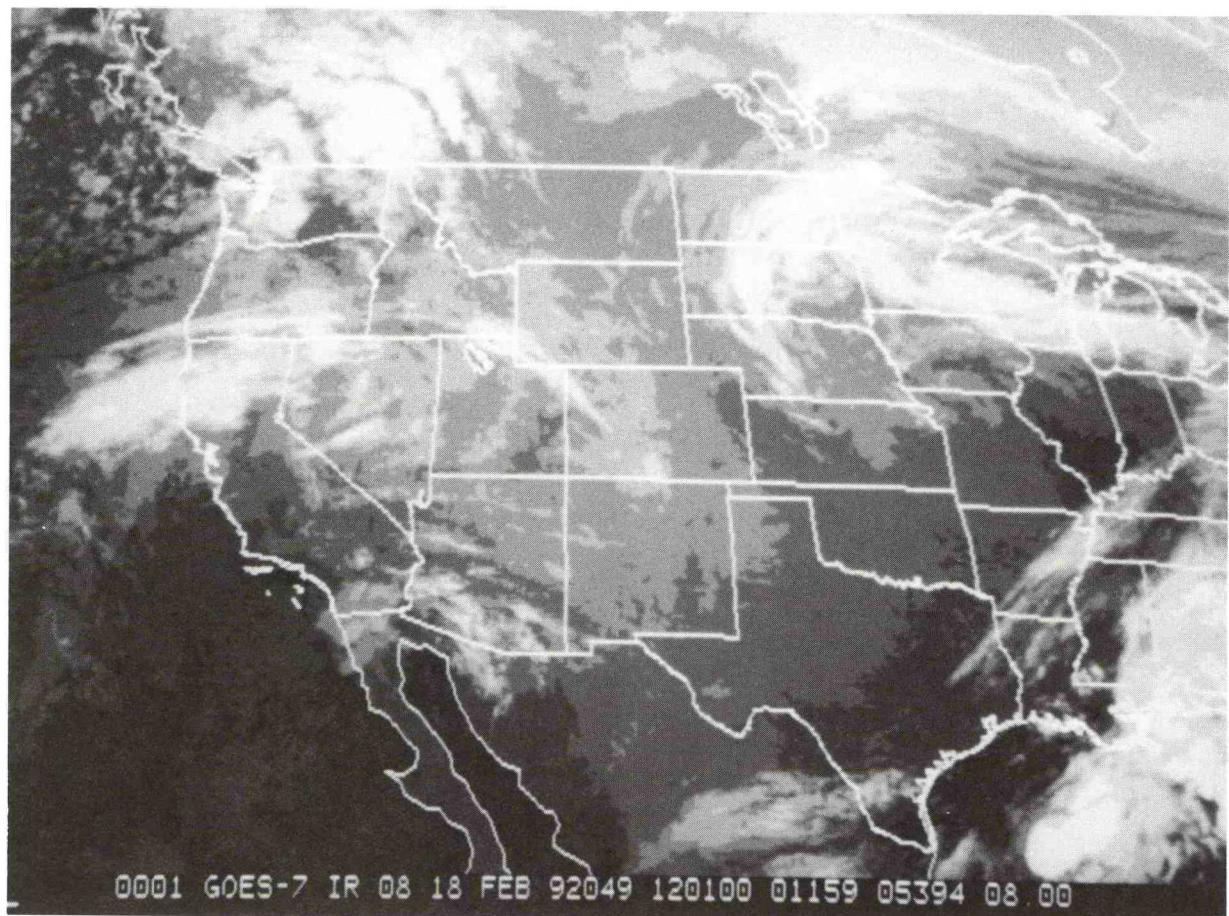
### Time (UTC)

DATA TYPE SOURCE 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

## Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 33 of 42 stations reported; 1 station intermittent.     |
|                 | AWOS  | 46 of 47 stations reported; 3 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 7 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported.                             |
|                 | SAO   | 390 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported.                             |


**WEATHER DISCUSSION****18 February 1992**


At 1200 UTC the surface low was located just east of Kansas City, and was expected to move to the northeast and be east of Chicago by 0600 UTC (19 February). Light snow to the north and west of the low pressure center (Iowa and eastern Nebraska) should move with the system. The extreme northeast corner of the STORM-FEST domain was expecting over an inch of snow between 1800 UTC and 0000 UTC (19 February).

By midday tomorrow, 19 February, a significant lee trough should be moving out of Montana and into the high plains. The pressure field over the STORM-FEST domain should be much flatter, as a large high pressure area moves into the region.

No fronts were forecasted for the next 24- to 48-h for the STORM-FEST domain, with the flow fairly zonal across the Dakotas. A cross section of potential temperature in northeast Kansas, using the MM4 model, indicated that the boundary layer array would be more stable tomorrow morning than it was this morning, with boundary layer RH decreasing slightly, which should provide reasonable conditions for a boundary layer study (focus of IOP 8). By 20 February, the next system that could affect the STORM-FEST domain should be moving into the southwest U.S. There was still some uncertainty in the timing of the onset of rain with this next system. Consensus indicated that first rain should not occur until late on 20 February in central Texas.

TUESDAY, FEBRUARY 18, 1992





## OPERATIONS SUMMARY

18 February 1992

IOP 7 ended at 1200 UTC today. Although the low pressure center was still in the domain, the NWS had reached the maximum length of time supplemental soundings could be released (48-h).

The NOAA P-3, Wyoming King Air, and C-131 were scheduled for a hard down for 18 February. IOP 8 was scheduled to begin at 1200 UTC, 19 February, to investigate the boundary layer structure within the boundary layer domain, as well as determine the way points for future boundary layer missions. CLASS soundings at Seneca were scheduled to begin at 1200 UTC, extending to 0000 UTC (20 February).

### Other:

A possible radiation flight was scheduled to begin at 0100 UTC, 20 February.

GOES-7 began RISOP mode at 2100 UTC for 3-h (not for STORM-FEST).

## STORM-FEST HOURLY COLLECTION OF DATA

Date: 18 February  
Julian Day: 49

Time (UTC)

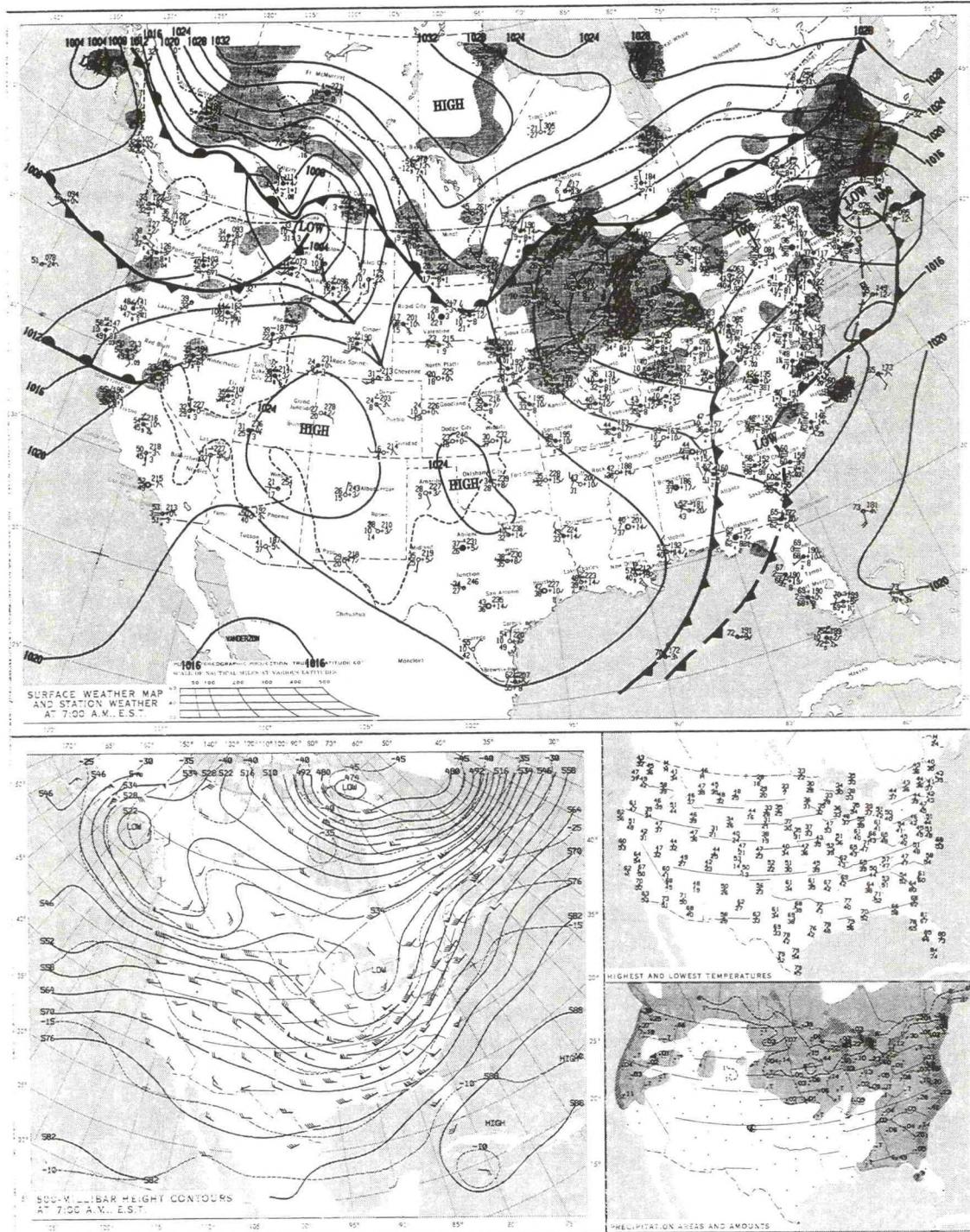
| DATA TYPE | SOURCE                | 00 | 01 | 02 | 03 | 04 | 05 | 06     | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|-----------------------|----|----|----|----|----|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| IOP       |                       | /  | /  | /  | /  | /  |    | IOP #7 |    | /  | /  | /  | /  |    |    |    |    |    |    |    |    |    |    |    |    |    |
| UPPER AIR | CLASS                 | 10 |    |    | 11 |    |    | 11     |    |    | 11 |    | 11 |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NWS (Inner)           | 21 |    |    | 22 |    |    | 22     |    |    | 22 |    | 21 |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NWS(Outer)            | 11 |    |    |    |    |    |        |    |    |    |    | 11 |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Picket Fence          |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Canadian              | 9  |    |    |    |    |    |        |    |    |    |    | 9  |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Ft. Sill              |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Flatlands             |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Seneca                |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | HIS                   |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | BL Profiler (RASS) <  |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    | 4  |    |    |    |    |    |    |    |    |    |
|           | BL Profiler (Winds) < |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    | 4  |    |    |    |    |    |    |    |    |    |
| RADAR     | CP-3                  |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CP-4                  |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Mile High             |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CHILL                 |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | HOT                   |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Cimarron              |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KOUN                  |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KFDR                  |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KOKC                  |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | St. Louis             |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Grand Island          |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| AIRCRAFT  | NOAA P-3              |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NCAR KA               |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | UWYO KA               |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | UW C-131              |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NASA ER-2             |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| SATELLITE | GOES RISOP            |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NOAA                  |    |    |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

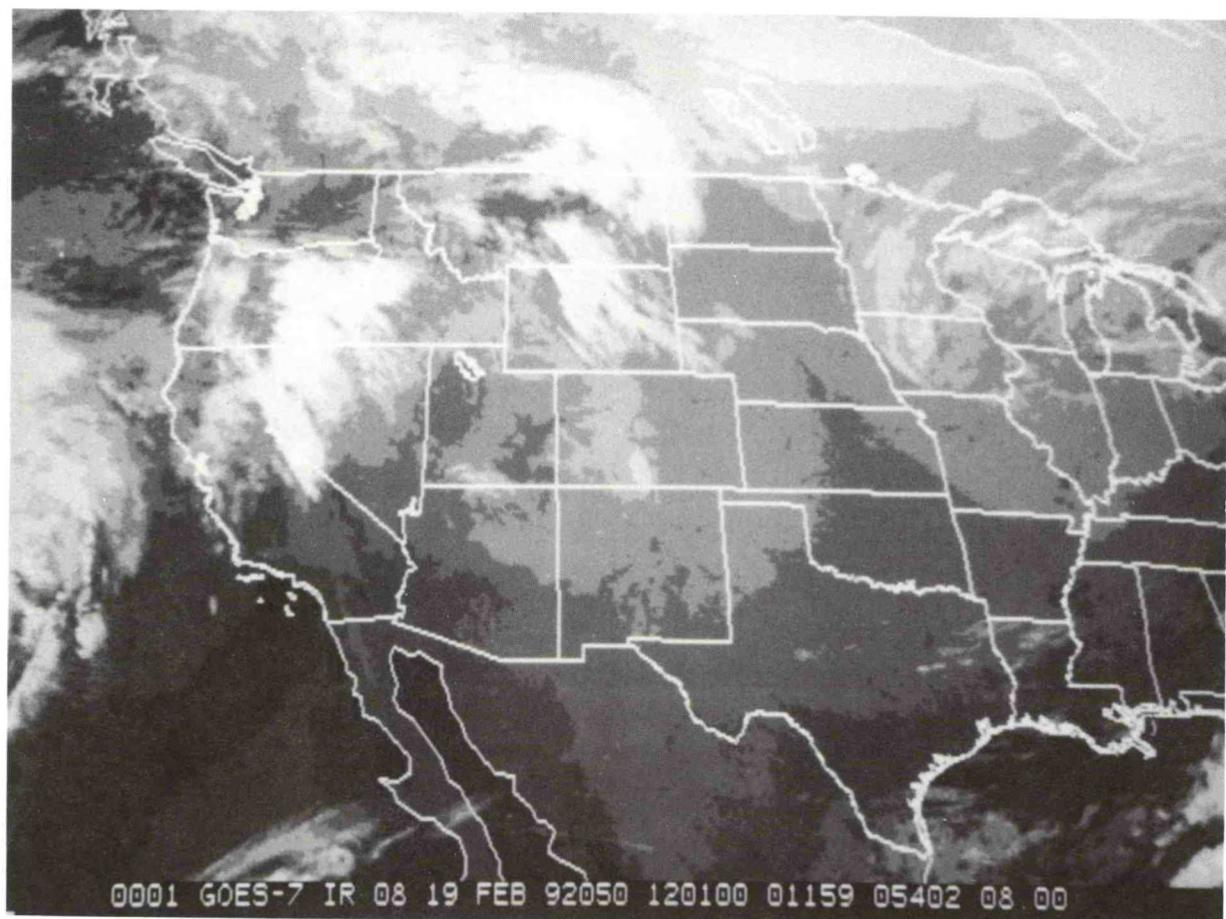
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 36 of 42 stations reported; 3 station intermittent.     |
|                 | AWOS  | 47 of 47 stations reported; 6 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 8 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported.                             |
|                 | SAO   | 391 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported; 1 station intermittent.     |

**NOTES:**


**WEATHER SUMMARY****19 February 1992**


The surface low pressure center and upper level trough that had been the focus of IOP 7 had finally moved out of the STORM-FEST domain and was located over Michigan, with some wrap around precipitation extending back into the STORM-FEST domain and stratus clouds over the boundary layer array.

A second surface low and associated lee trough currently located in north-central Montana, should be in North Dakota by tomorrow morning (20 February). A cold front associated with the low was expected to move slowly to the south. Air ahead of the front was quite dry, so any precipitation was expected to light and post-frontal. The front was not expected to enter the STORM-FEST domain before 1800 UTC, tomorrow (20 February). High pressure at the surface would dominate the rest of the STORM-FEST area.

A deep trough entering the California coast was expected to weaken slightly as it moved into the southwestern Colorado area by 0000 UTC (21 February). This feature was forecast to strengthen slightly as it moved to the lee side of the Rocky Mountains. Return moisture on 21 February was limited to the southern STORM-FEST domain area, and the models indicated that the trough could supply enough lift over eastern Oklahoma to produce some precipitation. The Canadian front that should be located along the northern border of the STORM-FEST domain on 20 February was expected to continue moving to the south, and be located over the center of the STORM-FEST domain by 21 February. Any precipitation associated with this feature was expected to be quite light.

WEDNESDAY, FEBRUARY 19, 1992





## OPERATIONS SUMMARY

19 February 1992

IOP 8 started at 1200 UTC with rawinsonde releases from the Seneca CLASS site to investigate the structure and evaluation of the boundary layer. The aircraft takeoff was delayed and then canceled at 1930 UTC, because of persistent stratus clouds over the boundary layer domain which made low-level flight legs impossible. The CP-3 and CP-4 radars terminated operations at 2000 UTC after collecting an hour of clear air data. The Seneca CLASS soundings was canceled before the 2100 UTC release.

The NCAR King Air radiation mission was carried out beginning at 2320 UTC to measure the radiational cooling at night in cloud free conditions. The final flight landed at 0444 UTC, 20 February. (See 5 February write-up for a description of the radiation mission objectives.)

Picket Fence soundings have been scheduled to begin at 0000 UTC, 20 February and continue for 24-h to monitor the wave moving into the west coast. Since this system wasn't forecast to affect the STORM-FEST domain, no NWS upstream soundings were scheduled.

GOES-7 began RISOP mode at 2100 UTC and operated for four hours. (Not in support of STORM-FEST).

**STORM-FEST  
HOURLY COLLECTION OF DATA**

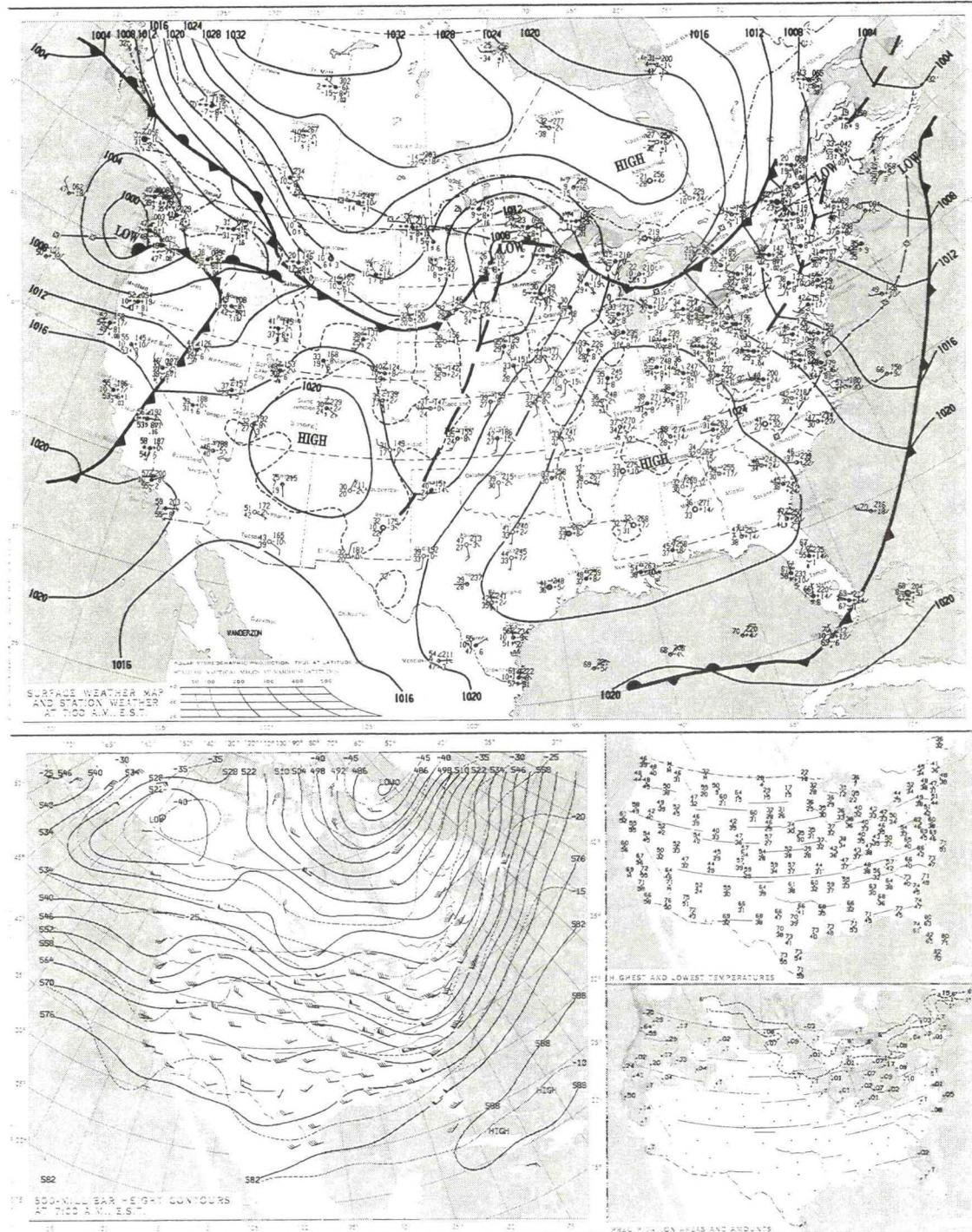
Date: 19 February  
Julian Day: 50

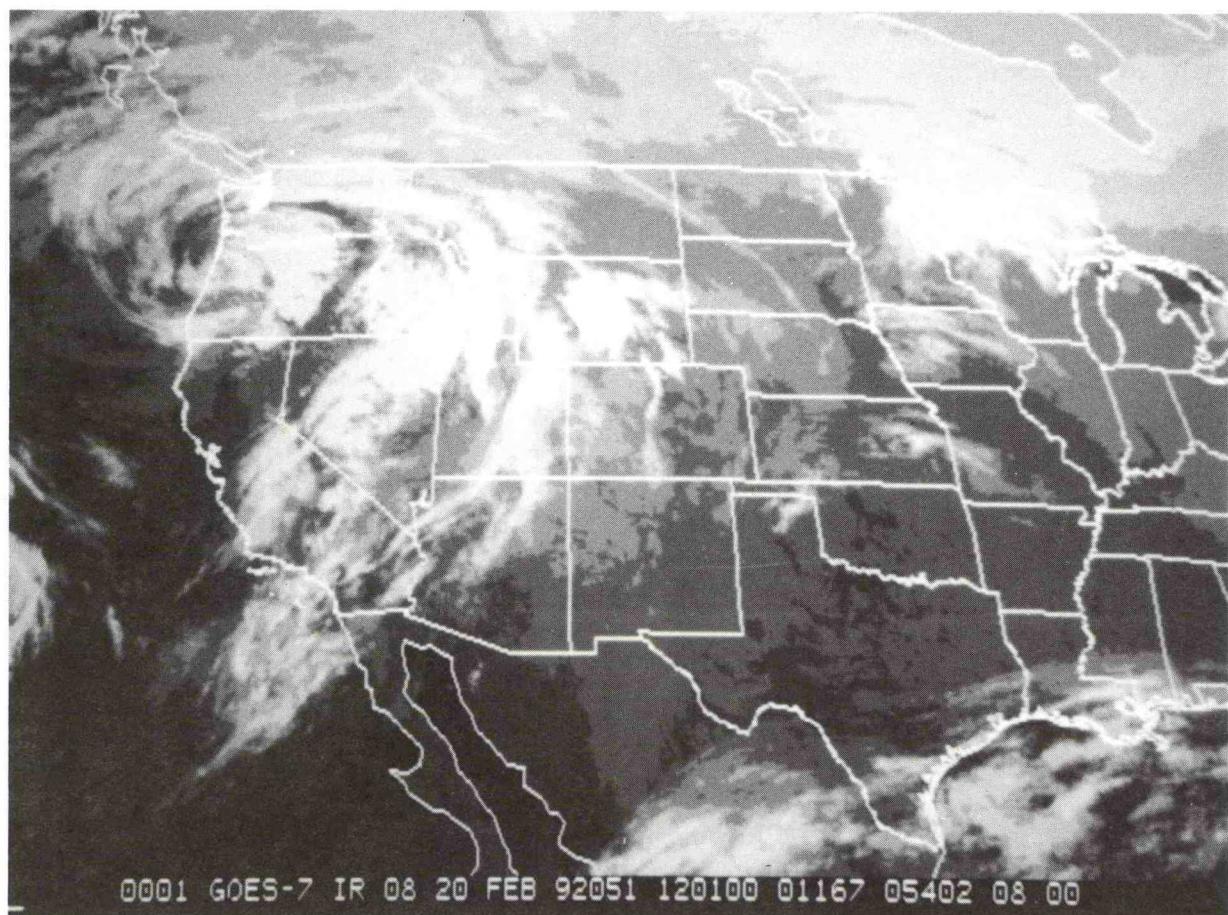
### Time (UTC)

DATA TYPE SOURCE 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

| IOP       | CLASS                 | 21 | 22 | IOP #8 |
|-----------|-----------------------|----|----|--------|
| UPPER AIR | NWS (Inner)           | 21 |    |        |
|           | NWS(Outer)            | 11 |    | 11     |
|           | Picket Fence          |    |    |        |
|           | Canadian              | 9  |    | 9      |
|           | Ft. Sill              |    |    |        |
|           | Flatlands             |    |    |        |
|           | Seneca                |    |    |        |
|           | HIS                   |    |    |        |
|           | BL Profiler (RASS) ↙  |    | 4  | 4      |
|           | BL Profiler (Winds) ↙ |    |    |        |
| RADAR     | CP-3                  |    |    |        |
|           | CP-4                  |    |    |        |
|           | Mile High             |    |    |        |
|           | CHILL                 |    |    |        |
|           | HOT                   |    |    |        |
|           | Cimarron              |    |    |        |
|           | KOUN                  |    |    |        |
|           | KFDR                  |    |    |        |
|           | KOKC                  |    |    |        |
|           | St. Louis             |    |    |        |
| AIRCRAFT  | Grand Island          |    |    |        |
|           | NOAA P-3              |    |    |        |
|           | NCAR KA               |    |    |        |
|           | UWYO KA               |    |    |        |
|           | UW C-131              |    |    |        |
| SATELLITE | NASA ER-2             |    |    |        |
|           | GOES RISOP            |    |    |        |
| SATELLITE | NOAA                  | ▲  | ▲  |        |

| Comments        |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 36 of 42 stations reported; 5 station intermittent.     |
|                 | AWOS  | 47 of 47 stations reported; 4 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 8 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported.                             |
|                 | SAO   | 390 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported.                             |


**NOTES:**


## WEATHER SUMMARY

20 February 1992

At 1200 UTC, the surface low pressure center that was observed over Montana had moved over northern Minnesota with a trough extending from the low down to the Texas panhandle. A cold front extended back from the low into Wyoming and Montana. High pressure still dominated the STORM-FEST domain. Winds were fairly zonal, although the front was expected to continue moving south and be in the central part of the STORM-FEST domain by tomorrow, 21 February. As with many fronts this season, it will be very shallow with the cold air well to the north. There was some chance of light precipitation in Iowa later in the day. No major systems were expected to move into the STORM-FEST domain until at least 24-25 February.

THURSDAY, FEBRUARY 20, 1992





## OPERATIONS SUMMARY

20 February 1992

No operations were carried out today, once the radiation mission was completed. IOP 9 was scheduled to begin tomorrow, 21 February, and will focus on boundary layer studies that were not conducted in IOP 8. The principle objectives of the IOP will be to intercompare the aircraft data with the boundary layer array data, including the Doppler radars. Soundings from the Seneca CLASS site were scheduled for 1800, 2100, 21 February and 0000 UTC, 22 February.

## STORM-FEST HOURLY COLLECTION OF DATA

Date: 20 February  
Julian Day: 51

Time (UTC)

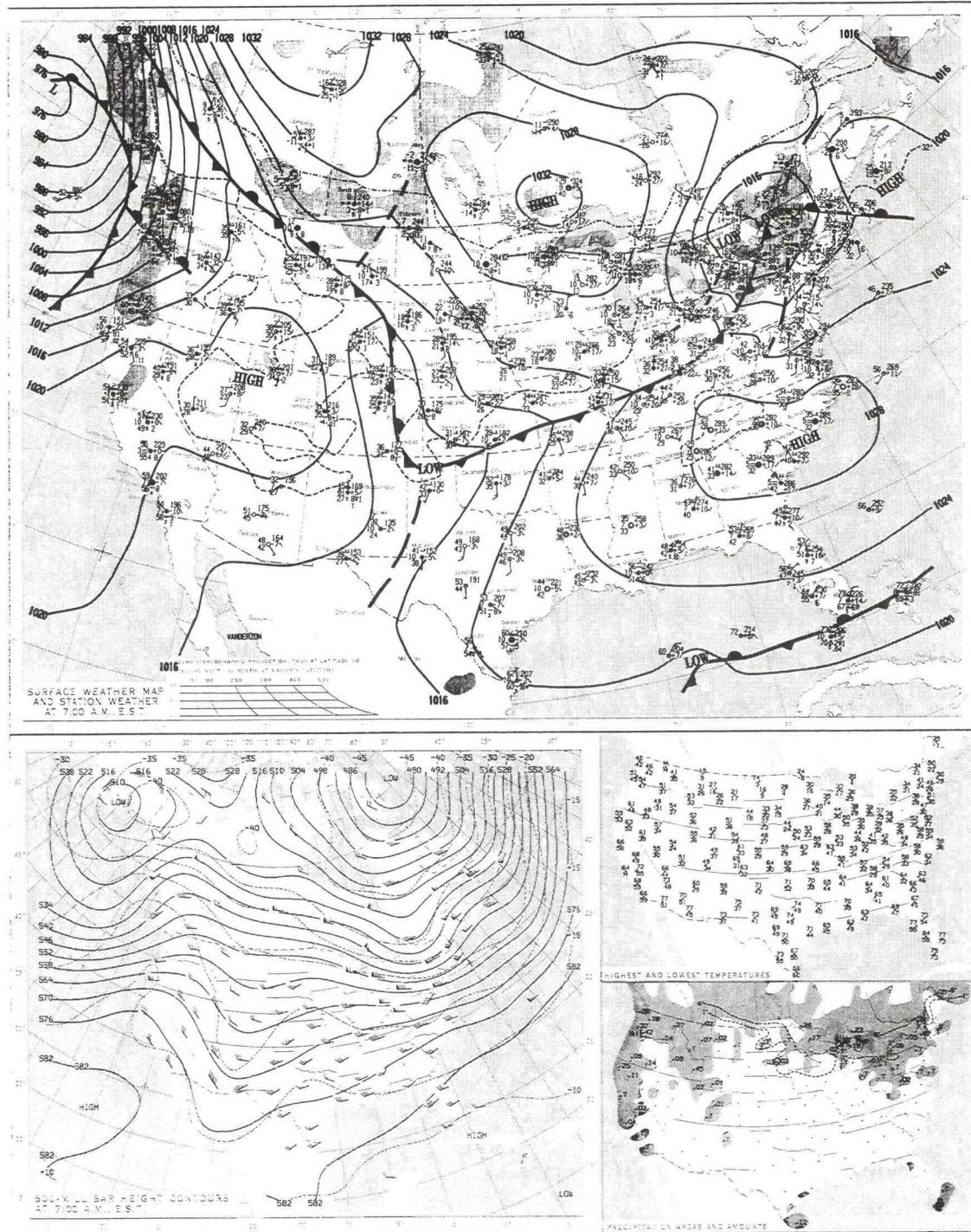
| DATA TYPE | SOURCE | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

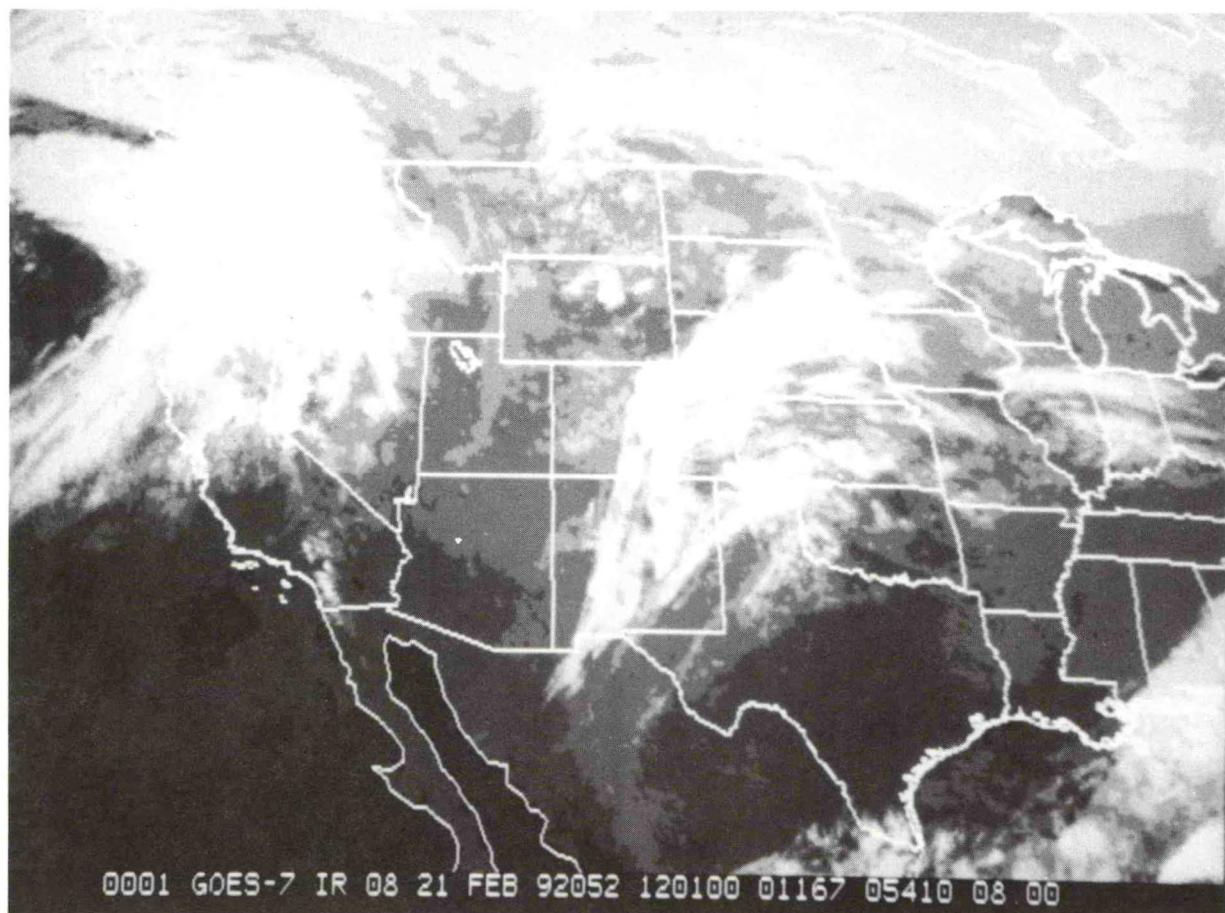
| IOP       |                       | Time (UTC) |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|-----------|-----------------------|------------|---|---|---|---|---|---|--|--|--|--|--|--|--|--|---|----|---|--|---|--|--|--|---|---|--|
| UPPER AIR | CLASS                 |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|           | NWS (Inner)           | 22         |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   | 22 |   |  |   |  |  |  |   |   |  |
|           | NWS(Outer)            | 11         |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   | 11 |   |  |   |  |  |  |   | 1 |  |
|           | Picket Fence          | 8          |   | 9 |   | 8 |   | 9 |  |  |  |  |  |  |  |  | 9 |    | 8 |  | 9 |  |  |  | 9 | 1 |  |
|           | Canadian              | 9          |   |   |   |   |   |   |  |  |  |  |  |  |  |  | 9 |    |   |  |   |  |  |  |   |   |  |
|           | Ft. Sill              |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|           | Flatlands             |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|           | Seneca                |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|           | HIS                   |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|           | BL Profiler (RASS) <  |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   | 4  |   |  |   |  |  |  |   |   |  |
|           | BL Profiler (Winds) < |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   | 4  |   |  |   |  |  |  |   |   |  |
| RADAR     | CP-3                  |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|           | CP-4                  |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|           | Mile High             |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|           | CHILL                 |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|           | HOT                   |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|           | Cimarron              |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|           | KOUN                  |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|           | KFDR                  |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|           | KOKC                  |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|           | St. Louis             |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|           | Grand Island          |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
| AIRCRAFT  | NOAA P-3              |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|           | NCAR KA               |            | ■ | ■ | ■ | ■ | ■ | ■ |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|           | UWYO KA               |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|           | UW C-131              |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|           | NASA ER-2             |            |   |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
| SATELLITE | GOES RISOP            |            | ■ |   |   |   |   |   |  |  |  |  |  |  |  |  |   |    |   |  |   |  |  |  |   |   |  |
|           | NOAA                  |            | ▲ |   |   |   |   |   |  |  |  |  |  |  |  |  | ▲ |    |   |  |   |  |  |  |   | ▲ |  |

| 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

### Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 36 of 42 stations reported; 2 station intermittent.     |
|                 | AWOS  | 47 of 47 stations reported; 4 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 8 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported.                             |
|                 | SAO   | 393 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported; 1 station intermittent.     |


**NOTES:**


**WEATHER SUMMARY****21 February 1992**

The low pressure center that has skirted the STORM-FEST domain for the past several days continued to move to the east and at 1200 UTC was located over northern New York. A cold front extended westward from the low into the central part of the STORM-FEST domain. This front was expected to enter the boundary layer array by 2100 UTC and pass through Kansas City by 0000 UTC tomorrow, 22 February. As has been typical this year, the cold air was well behind the front such that there will be little temperature contrast directly related to the windshift along the front.

Over the next 36- to 48-h no significant weather was expected in the STORM-FEST domain. This weak front was expected to continue to move to the south and some light precipitation could develop in Texas and Oklahoma as an upper-level trough moves into that area.

FRIDAY, FEBRUARY 21, 1992





**OPERATIONS SUMMARY****21 February 1992**

IOP 9 began at 1600 UTC, focusing on the structure of the fair weather boundary layer as determined by aircraft and data from the boundary layer array. This mission was conducted in northeast flow after the passage of the weak short wave. The NCAR King Air aircraft took off at 1725 UTC and flew two box patterns; one at 600 m and one at 1200 m MSL; and two L-patterns at 450 m and 700 m MSL. Waves were observed above the inversion. Frequent vertical soundings were made with the aircraft to investigate the variation of the inversion height with time. The aircraft returned to Richards-Gebaur AFB at 2150 UTC.

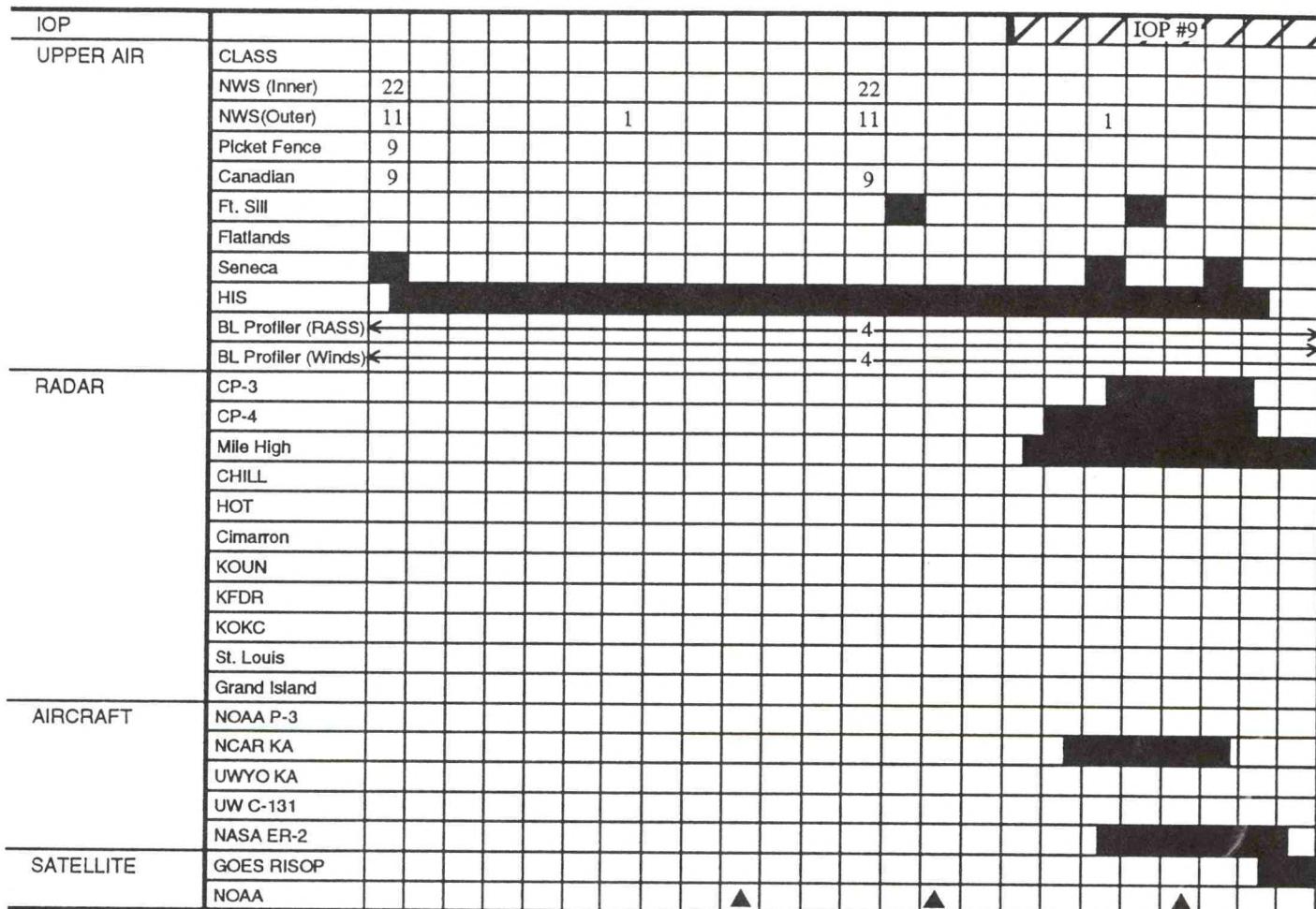
Seneca CLASS soundings were taken at 1800, 2100, and 0000 UTC, 22 February, and the CP-3 and CP-4 radars operated in clear air flux scan mode throughout the aircraft mission.

This IOP was scheduled to end at 0000 UTC, 22 February, but an interesting tightening of the north-south thermal gradient along the front located across Missouri was of sufficient interest that a second King Air flight was scheduled to investigate the structure of the front. The NCAR King Air took off at 0011 UTC, 22 February, and flew a "butterfly" pattern at 650 m MSL over the PAM network in Missouri. Aircraft soundings were taken before and after the "butterfly" portion of the flight. Observations indicated that a low center may have formed just east of Richards-Gebaur AFB that initiated the thermal enhancement of the front. It appeared that this circulation weakened with time. The aircraft landed at 0254 UTC (22 February).

This event will be the focus of IOP 10 that is scheduled to start at 1200 UTC tomorrow, 22 February. Due to time constraints, only the CLASS sounding sites could be activated since the NWS sites required a 24-h notification.

The ER-2 flew an oceanic convection mission (1830 UTC) off the Florida panhandle, which did not involve any STORM-FEST objectives.

GOES-7 RISOP mode began at 2230 UTC and continued to 0500 UTC (22 February). Again, not in support of STORM-FEST.


## STORM-FEST

### HOURLY COLLECTION OF DATA

Date: 21 February  
 Julian Day: 52

Time (UTC)

| DATA TYPE | SOURCE | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

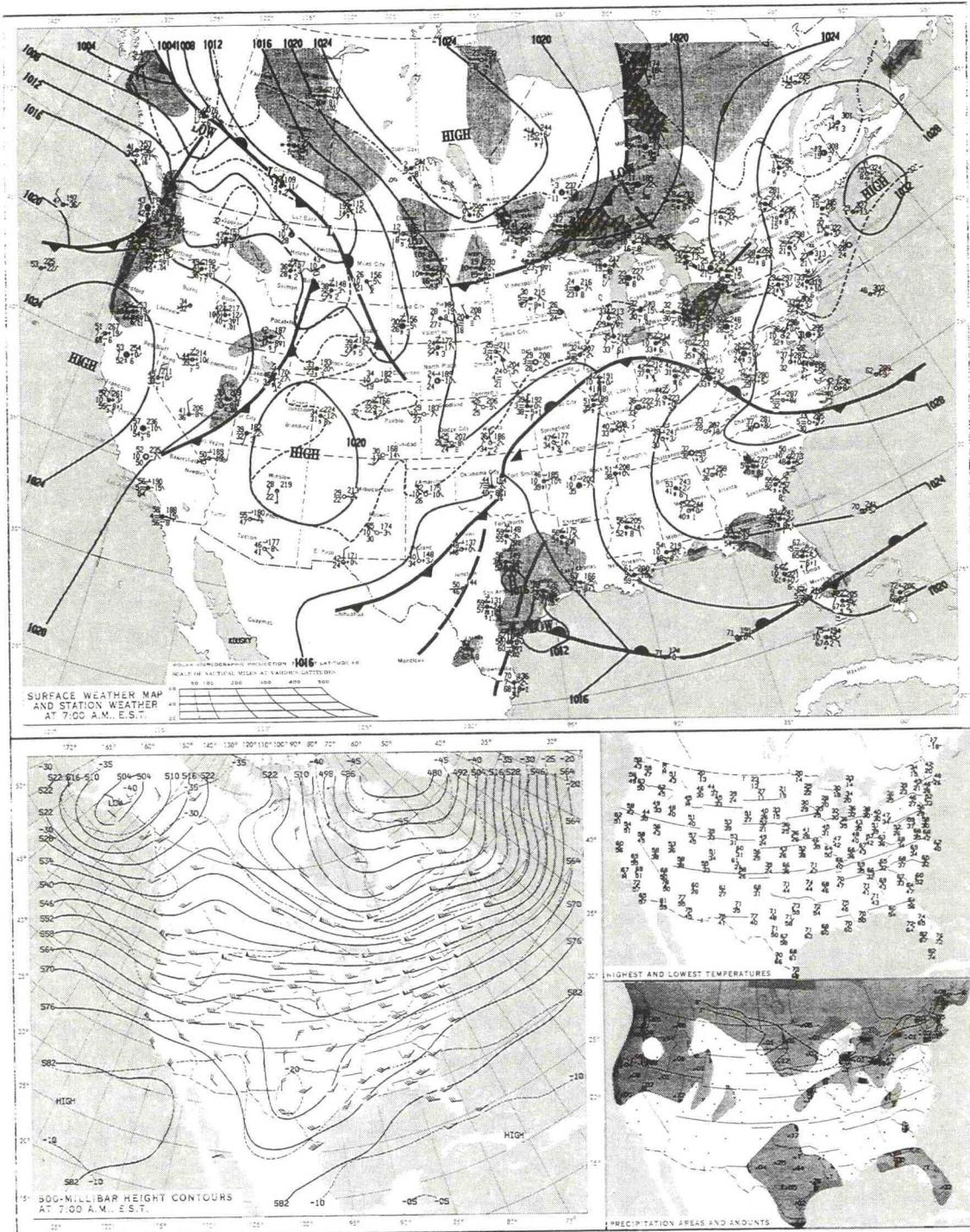


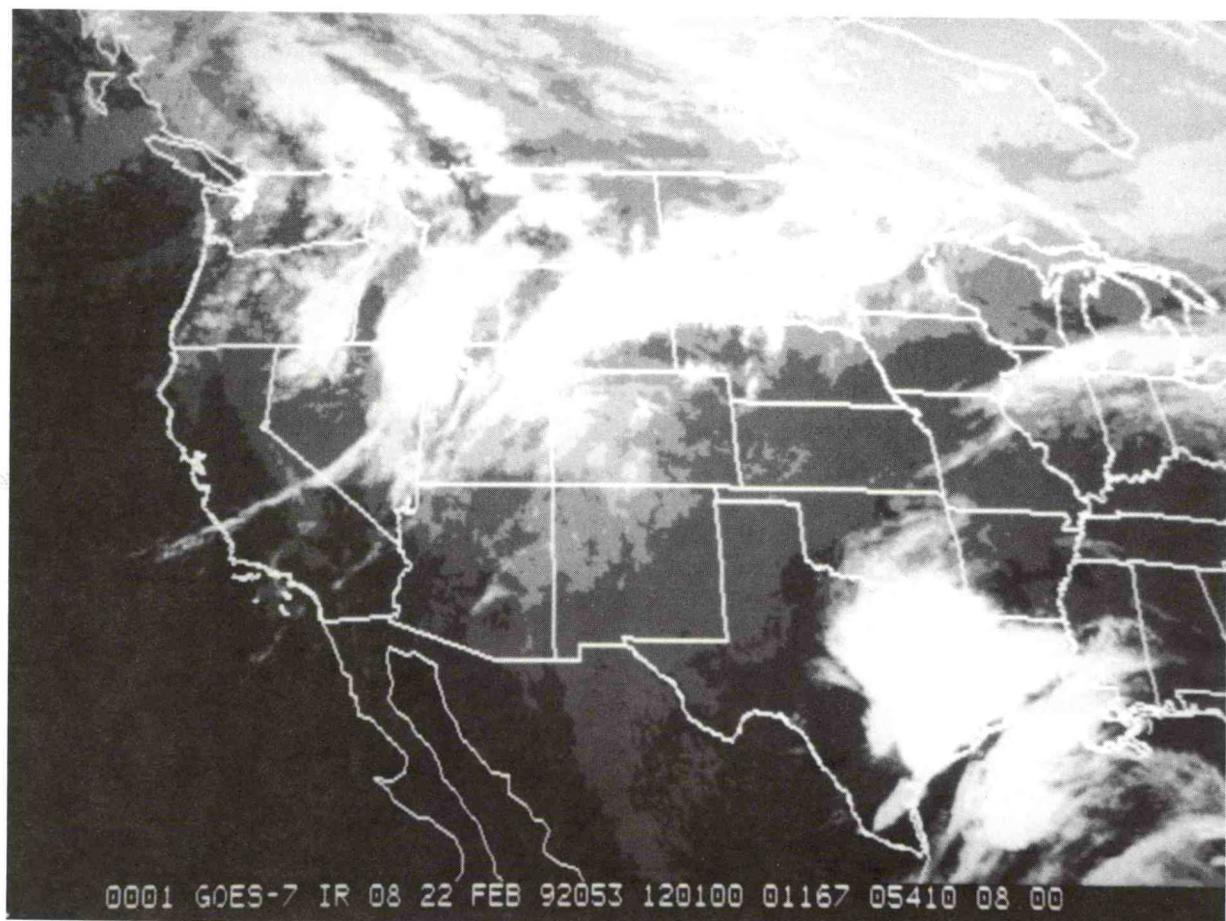
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 38 of 42 stations reported; 3 station intermittent.     |
|                 | AWOS  | 47 of 47 stations reported; 3 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 14 stations intermittent.   |
|                 | PROFS | 21 of 22 stations reported.                             |
|                 | SAO   | 397 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 13 of 13 stations reported; 2 stations intermittent.    |

**NOTES:**


## WEATHER SUMMARY


22 February 1992

At 1200, UTC the cold front that was seen yesterday, 21 February, continued to move slowly into central Oklahoma and Texas. A deep trough at 500 mb was still situated over Texas and there was light rain over southeastern Texas.

The models indicated that this front would slowly weaken and wash out over time. The main question was what would happen with the system that was forecast to develop over New Mexico in the next 24- to 36-h, and how would it affect the STORM-FEST domain? The model guidance was unclear as to the timing and phasing of the systems.

SATURDAY, FEBRUARY 22, 1992





**OPERATIONS SUMMARY****22 February 1992**

Based on the events of late yesterday, 21 February, IOP 10 was conducted to continue the investigations of the structure of the non-precipitating cold front that was examined in the second part of IOP 9. The original plans were to begin CLASS soundings at 1200 UTC, fly up to two aircraft and operate the CP-3 and CP-4 radars. With the front becoming weaker through time, the decision was made to schedule only four CLASS stations (located in Missouri and Kansas) for 1500 UTC soundings and only the Seneca CLASS site for the 1800 UTC sounding.

With diurnal warming, the frontal structure became more linear and weaker. Soundings indicated the front was sufficiently deep to sample, so it was decided to fly the frontal mission as planned in the region of tightest gradient (between Sedalia, KS and Columbia, MO).

Based upon this decision, the radar operation was canceled. The planned takeoff of the NCAR King Air was scheduled at 1730 UTC, but was delayed due to data-system problems. The takeoff occurred at 1818 UTC, and by this time satellite imagery showed that a rope cloud had developed along the front.

The aircraft flight pattern was flown roughly as planned although the rope cloud had dissipated. (Subsequent analysis of satellite imagery suggested that the cloud formed when a gravity wave caught up with the front and then dissipated as the gravity wave continued southward.)

The flight pattern consisted of a short zig-zag (almost a "butterfly" pattern) at 2200 ft MSL (~1200 ft. AGL) followed by transects normal to the front at 2200, 1200, and 3000 ft. MSL (1200, 200, and 2000 ft. AGL). The front was penetrated at all levels.

A summary of the mission was that it successfully continued the documentation of the weak stationary front that was investigated on the second flight of the NCAR King Air during IOP 9. Satellite data suggested that the front interacted with a gravity wave producing a rope-like cloud feature. This could possibly show up in PAM data.

**Other Activities:**

Plans continued for IOP 11 to investigate the developing low and associated cold front that was expected to move out of New Mexico into the STORM-FEST domain tomorrow, 23 February. The NWS inner domain soundings were scheduled to begin at 2100 UTC (or earlier) and continue to 0900 UTC, 25 February. CLASS soundings were scheduled to begin at 1800 UTC and continue to 0900 UTC, 25 February. Satellite RISOP will begin at 1200 UTC and continue for 36-h. The CP-3 and CP-4 Doppler radars were scheduled to be operational by 1500 UTC. The earliest aircraft flights were not scheduled before 1600 UTC.

**STORM-FEST**  
**HOURLY COLLECTION OF DATA**

Date: 22 February

Julian Day: 53

Time (UTC)

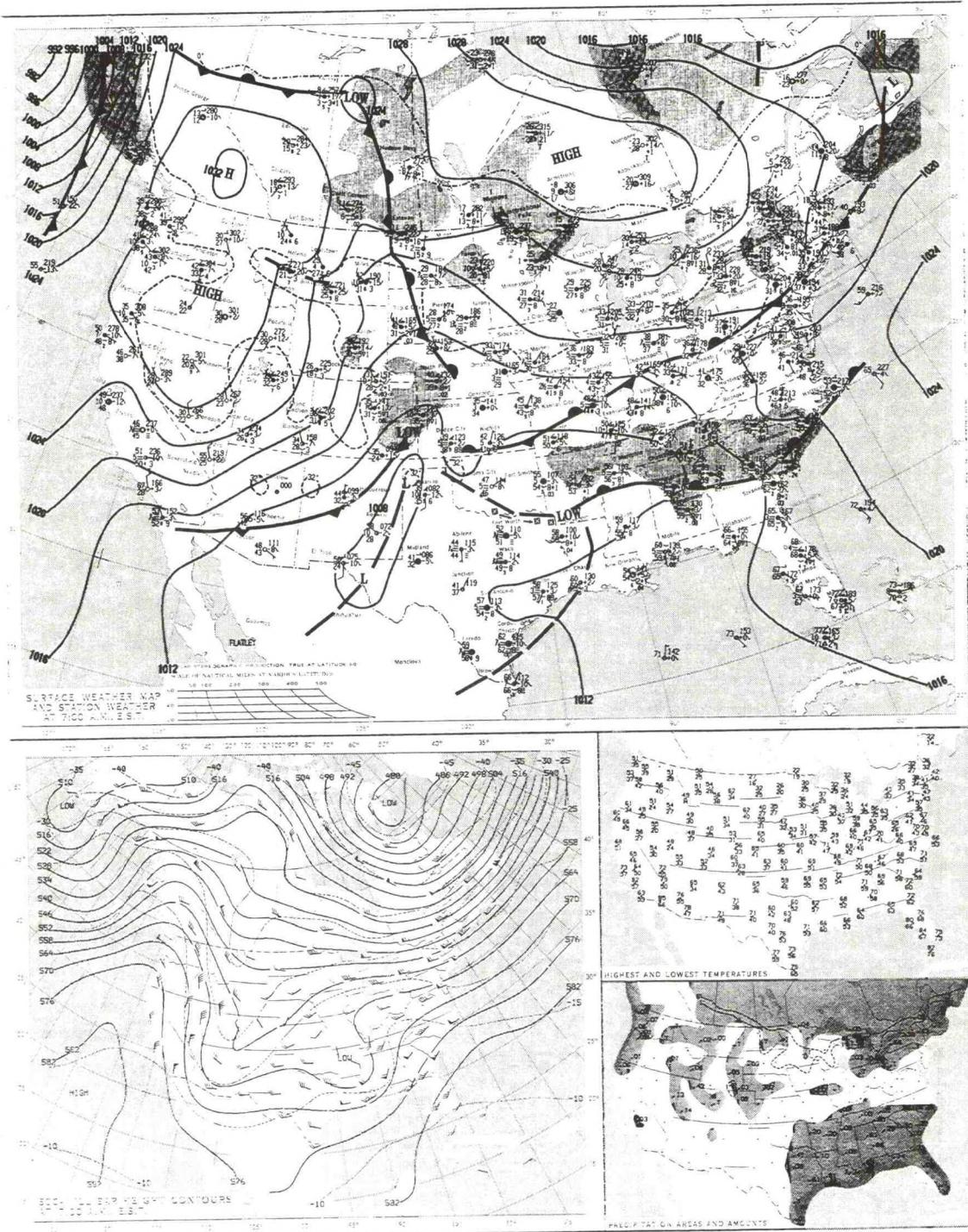
| DATA TYPE | SOURCE                | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| IOP       |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| UPPER AIR | CLASS                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NWS (Inner)           | 22 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NWS(Outer)            | 11 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Picket Fence          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Canadian              | 9  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Fl. Sill              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Flatlands             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Seneca                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | HIS                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | BL Profiler (RASS) ←  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | BL Profiler (Winds) ← |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| RADAR     | CP-3                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CP-4                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Mile High             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CHILL                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | HOT                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Cimarron              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KOUN                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KFDR                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KOKC                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | St. Louis             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Grand Island          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| AIRCRAFT  | NOAA P-3              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NCAR KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | UWYO KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | UW C-131              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NASA ER-2             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| SATELLITE | GOES RISOP            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NOAA                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

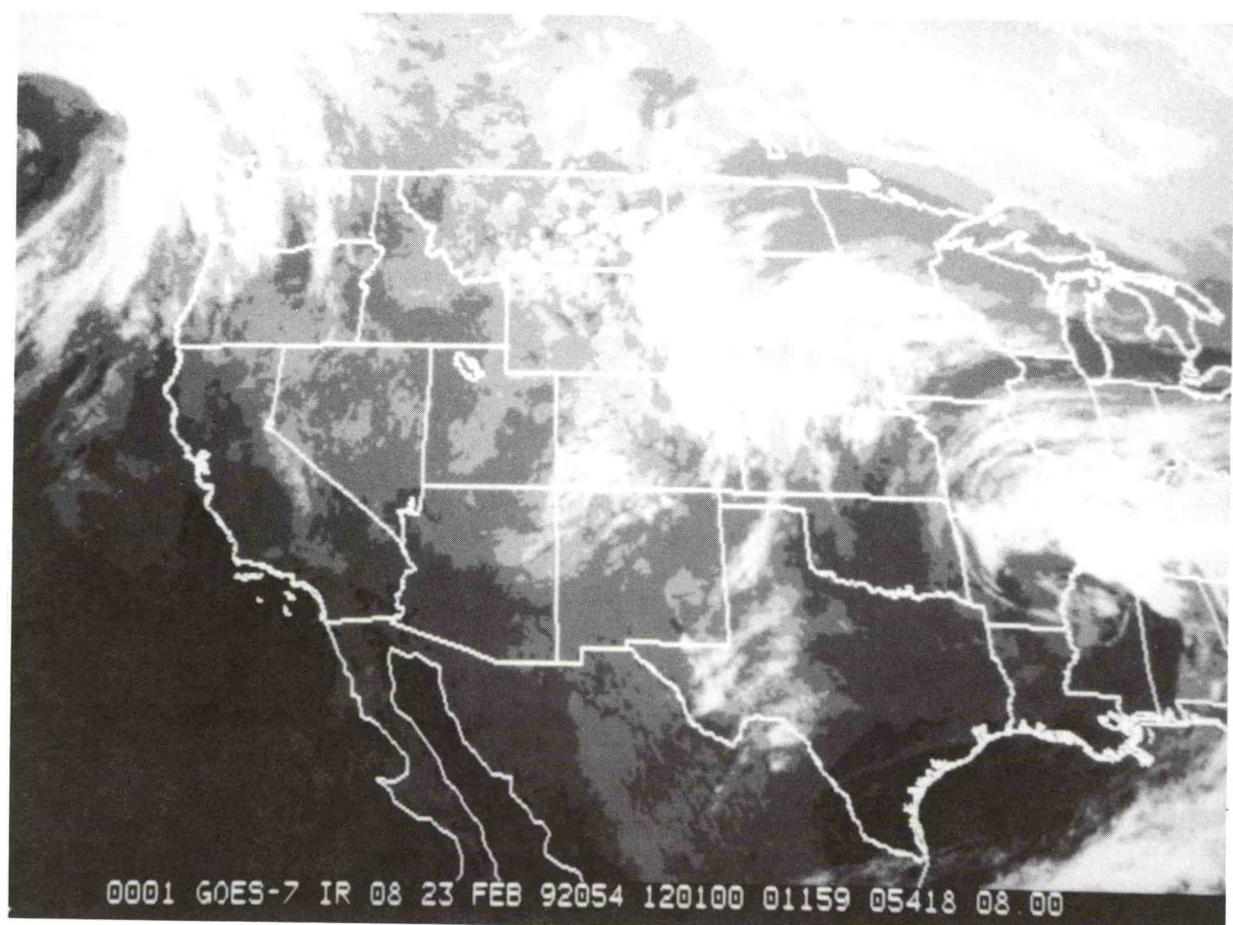
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

## Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 38 of 42 stations reported; 2 station intermittent.     |
|                 | AWOS  | 47 of 47 stations reported; 4 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported; 1 station intermittent.     |
|                 | PAM5  | 35 of 35 stations reported; 7 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported.                             |
|                 | SAO   | 392 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 13 of 13 stations reported.                             |

---


**WEATHER SUMMARY****23 February 1992**


As predicted for the past several days, a very complex weather situation existed over the STORM-FEST domain. There was a well defined split trough, with one portion of the trough moving across Wyoming and the other diving south toward New Mexico. An interesting and complex cyclonic circulation was present north of Goodland, KS, with 30-40 kt winds behind this feature and some light snow and rain to the south and east. A weak (but well-shown on MAPS 30 m AGL winds) front had moved south across the boundary layer array behind the upper-level low centered in Arkansas. There was a narrow band of light showers associated with this feature that may be further enhanced over the next 12- to 24-h. The MM-4 model indicated that this precipitation area should expand in time as low-level convergence and low-level moisture increases. The main area of precipitation should be over the Texas panhandle, extending into Oklahoma. A main question was how much precipitation will be produced in the Little Washita Basin. NMC forecasters felt that the precipitation would mainly be over Texas, eventually shifting to the Gulf, and doubted the more northern precipitation location that the MM-4 model was predicting.

The models indicated that in the next 24- to 48-h, high pressure would build into the Rocky Mountain region pushing north and northeast winds through most of the STORM-FEST domain. In the earliest part of this period there could be precipitation in southern Oklahoma and northern Texas, although the greater likelihood will be that the heaviest precipitation would be located in southern Texas. This activity was expected to shift to the east and be out of the STORM-FEST domain by 06 UTC, 25 February.

All the models predicted a shortwave would move down from Alberta Canada into Montana by 0000 UTC, 25 February. There was very little moisture with this system, such that it would probably just bring down some colder air with increasing cloudiness.

SUNDAY, FEBRUARY 23, 1992





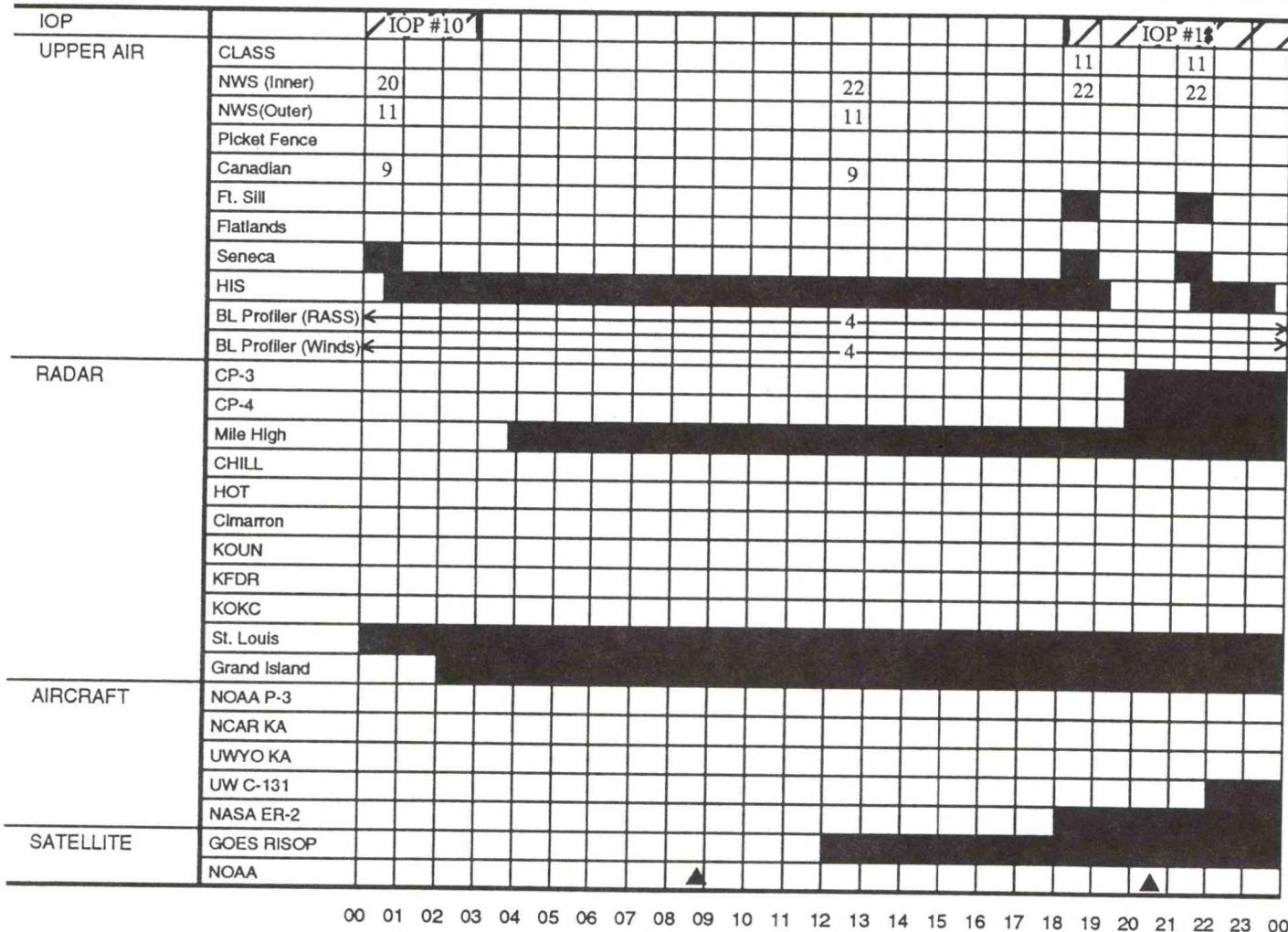
**OPERATIONS SUMMARY****23 February 1992**

IOP 11 began today at 1800 UTC to document a cold front and associated rainbands moving south from Nebraska into Missouri. At the beginning of this IOP there were three distinct features of interest. The first was a closed low circulation in Texas and Mexico. The second was a shallow cold surge/inverted trough which was moving eastward through Nebraska and Kansas. The third was an upper-level shortwave trough over eastern Kansas and Missouri. The following activities were carried out to support this IOP.

1800 UTC To study these events, particularly focusing on the cold front and associated precipitation, CLASS and NWS inner domain soundings began at 1800 UTC. Three hourly soundings were scheduled to continue until 0900 UTC, 25 February. Satellite RISOP began at 1200 UTC and was scheduled to continue for 36-h. The CP-3 and CP-4 radars became operational at 1947 UTC to monitor precipitation developing in the area.

1800 UTC The NASA ER-2 took off to investigate the use of remote sensing to sample the rain/snow line in eastern Colorado, western Kansas, and western Nebraska. Rain or snow was reported across the front range of the Rocky Mountains and in the Nebraska panhandle. (Sydney, Nebraska, reported light snow throughout the flight. The ER-2 made several southwest to northeast passes along a well defined rainband.) The ER-2 also overflowed an area of active convection in west Texas on both the outbound and inbound legs. All instruments were functioning, but the AMPR and LIP both had signal noise problems. The aircraft landed at 0030 (24 February).

2159 UTC The University of Washington C-131 aircraft took off to investigate the structure of a rainband that had moved over the dual Doppler area. The aircraft flew sawtooth patterns at 8k, 10k and 12 kft. from about 2230 UTC to 0100 UTC, 24 February. The aircraft then flew northwest at 10 kft. to intersect the front over Nebraska. The aircraft descended to 7 kft. at about 0200 UTC, and flew to within 100 miles of North Platte, Nebraska, before turning back to Richards-Gebaur AFB. The aircraft flew back at Richards-Gebaur AFB at 5 kft. and landed at 0401 UTC, 24 February.


# STORM-FEST

## HOURLY COLLECTION OF DATA

Date: 23 February  
 Julian Day: 54

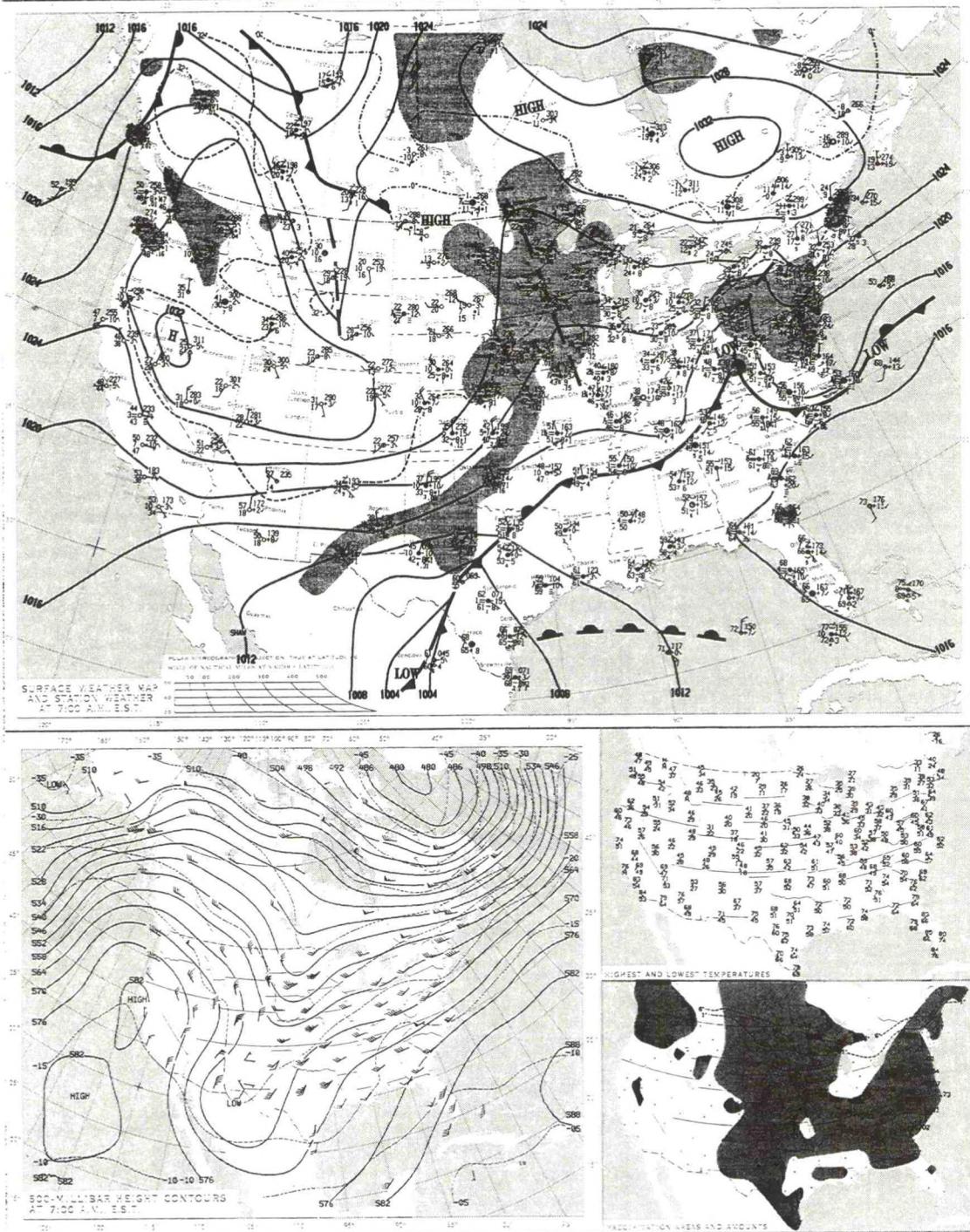
Time (UTC)

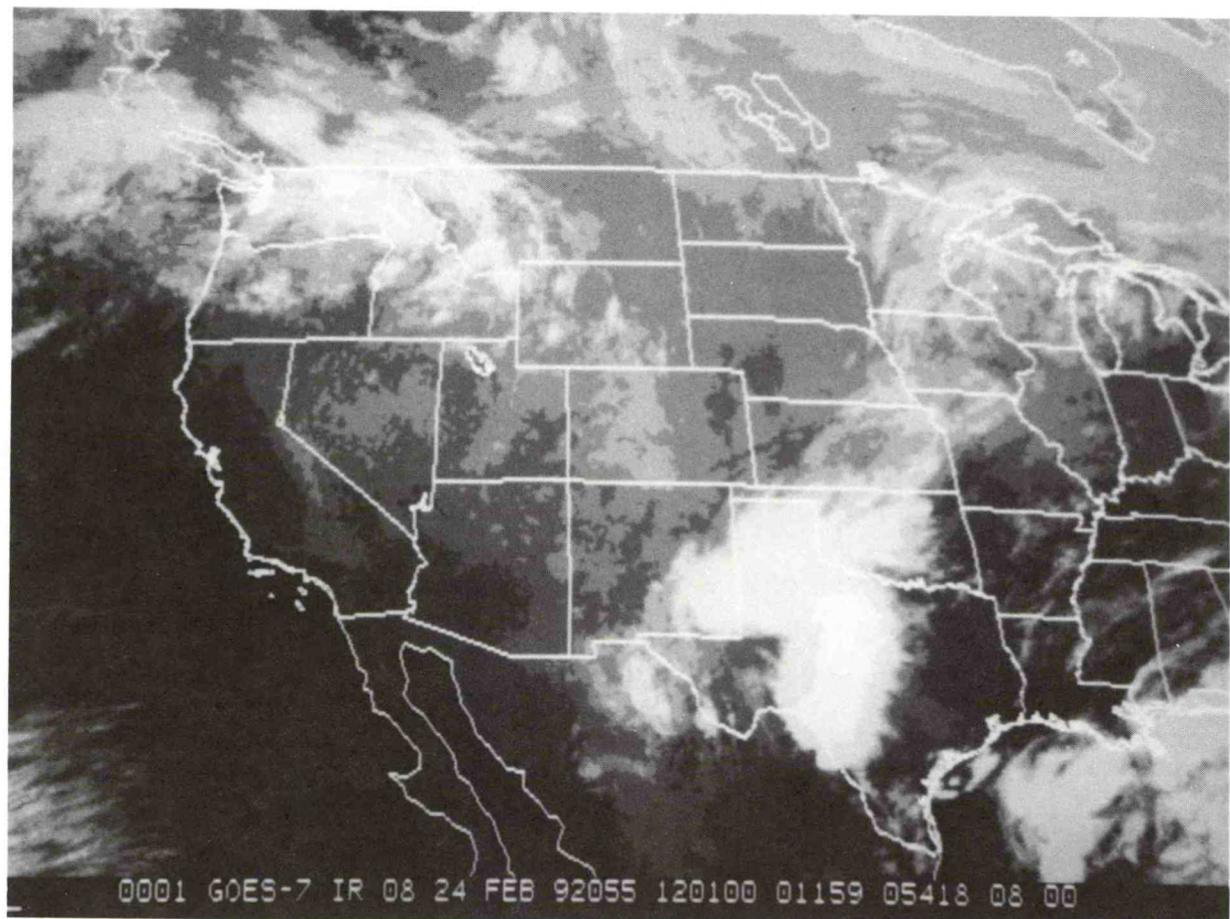
| DATA TYPE | SOURCE | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|



Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 38 of 42 stations reported.                             |
|                 | AWOS  | 47 of 47 stations reported; 3 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 7 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported.                             |
|                 | SAO   | 380 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 13 of 13 stations reported.                             |


**NOTES:**


**WEATHER SUMMARY****24 February 1992**

At 1200 UTC, there was an area of moderate precipitation in central Texas associated with the low pressure area in southern Texas and northern Mexico. A line of lighter precipitation extended from this area northeastward, up through Kansas City into Iowa and Minnesota. Behind this line there were strong northwest winds pushing much drier air into the STORM-FEST domain.

The deep 500 mb trough over southern Texas and New Mexico was forecast to move slowly to the east over the next 24-h. This was expected to push the current precipitation area eastward and be out of the STORM-FEST domain by tomorrow, 25 February. A weak shortwave was forecast to move through Colorado by 1200 UTC tomorrow, 25 February, that could develop a few rain or snow showers in eastern Colorado, western Nebraska and western Kansas. Other than that, high pressure at the surface should dominate the weather for the next 24- to 48-h period as it pushes cooler and drier air into the STORM-FEST domain.

MONDAY, FEBRUARY 24, 1992





**OPERATIONS SUMMARY****24 February 1992**

IOP 11 continued throughout the day. Soundings from the NWS inner domain and the CLASS sites continued all day. The C-band radars (CP-3 and CP-4) radars operated until 2140 UTC collecting data on the rainbands that moved through the area. The HOT radar collected data starting at 2200 UTC as the system moved through Illinois. GOES-7 remained in RISOP mode during the day.

Data were also collected from the NSSL Cimarron radar and the Oklahoma City WSR-88D. The Cimarron radar collected data from about 1220 UTC to 1755 UTC as a band of light to moderate precipitation moved through the Little Washita basin. The Oklahoma City WSR-88D collected Level II data from about 0400 UTC to 2200 UTC as this precipitation system moved through Oklahoma.

As the cold surge moved underneath the upper-level trough, the system appeared to organize into a distinct front and associated rainband over Missouri. This feature became the focus of the aircraft flights. This rainband was to far to the east to be observed by the CP-3 and CP-4 radars. The following summaries describe the aircraft missions in more detail.

1756 UTC      The NOAA P-3 took off to investigate the structure of the rainband that had formed in a southwest to northeast band across Missouri. The P-3 flew a sawtooth pattern along the length of the rainband at 14 kft. obtaining good radar coverage.

1800 UTC      Both the NCAR King Air (takeoff at 1807 UTC) and the University of Washington C-131 (takeoff at 1802 UTC) took off to do complementary flights with the NOAA P-3. Both the King Air and the C-131 flew flight patterns across the width of the rainband. The King Air flew at 12k, 10k, 8k and 9 kft. The C-131 flew at 6k, 4k, 3k and 5 kft. The NCAR King Air aircraft landed at 2216 UTC. The University of Washington C-131 landed at 0101 UTC (25 February) and the NOAA P-3 landed at 0020 UTC (25 February).

**STORM-FEST**  
**HOURLY COLLECTION OF DATA**

Date: 24 February  
Julian Day: 55

Time (UTC)

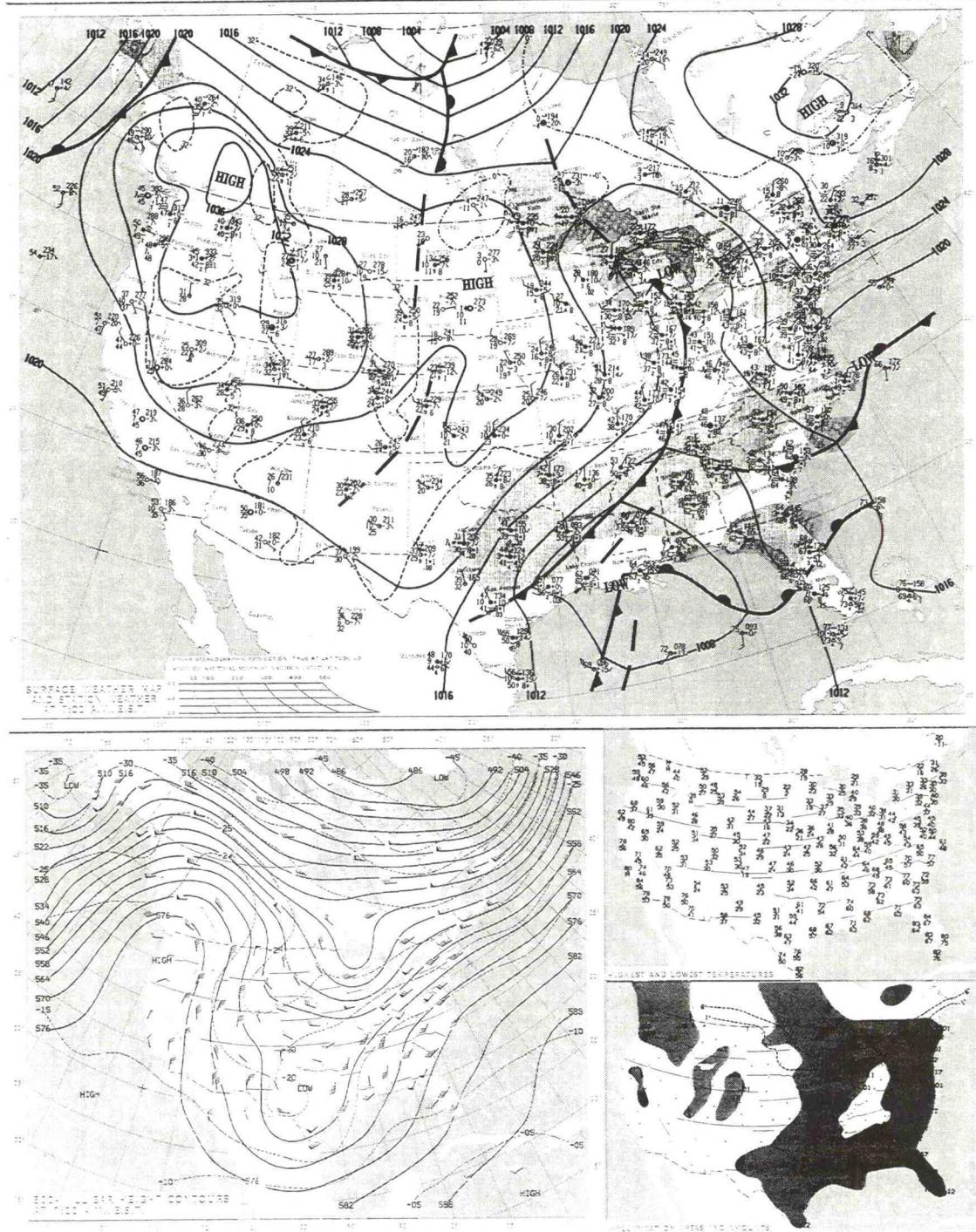
| DATA TYPE | SOURCE              | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13      | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|---------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|---------|----|----|----|----|----|----|----|----|----|----|----|
| IOP       |                     | /  | /  | /  | /  | /  | /  | /  | /  | /  | /  | /  | /  | /  | IOP #11 | /  | /  | /  | /  | /  | /  | /  | /  | /  | /  |    |
| UPPER AIR | CLASS               | 11 |    | 11 |    | 11 |    | 11 |    | 11 |    | 11 |    | 11 |         | 11 |    | 11 |    | 11 |    | 11 |    | 9  |    |    |
|           | NWS (Inner)         | 22 |    | 22 |    | 22 |    | 22 |    | 22 |    | 22 |    | 22 |         | 22 |    | 22 |    | 22 |    | 22 |    | 22 |    |    |
|           | NWS(Outer)          | 11 |    |    |    |    |    |    |    |    |    |    |    |    |         | 11 |    |    |    |    |    |    |    |    |    |    |
|           | Picket Fence        |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
|           | Canadian            | 9  |    |    |    |    |    |    |    |    |    |    |    |    |         | 9  |    |    |    |    |    |    |    |    |    |    |
|           | Ft. Sill            |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
|           | Flatlands           |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
|           | Seneca              |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
|           | HIS                 |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
|           | BL Profiler (RASS)  |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    | 4  |    |    |    |    |    |    |    |    |    |
|           | BL Profiler (Winds) |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    | 4  |    |    |    |    |    |    |    |    |
| RADAR     | CP-3                |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
|           | CP-4                |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
|           | Mile High           |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
|           | CHILL               |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
|           | HOT                 |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
|           | Cimarron            |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
|           | KOUN                |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
|           | KFDR                |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
|           | KOKC                |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
|           | St. Louis           |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
|           | Grand Island        |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
| AIRCRAFT  | NOAA P-3            |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
|           | NCAR KA             |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
|           | UWYO KA             |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
|           | UW C-131            |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
|           | NASA ER-2           |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
| SATELLITE | GOES RISOP          |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |
|           | NOAA                |    |    |    |    |    |    |    |    |    |    |    |    |    |         |    |    |    |    |    |    |    |    |    |    |    |

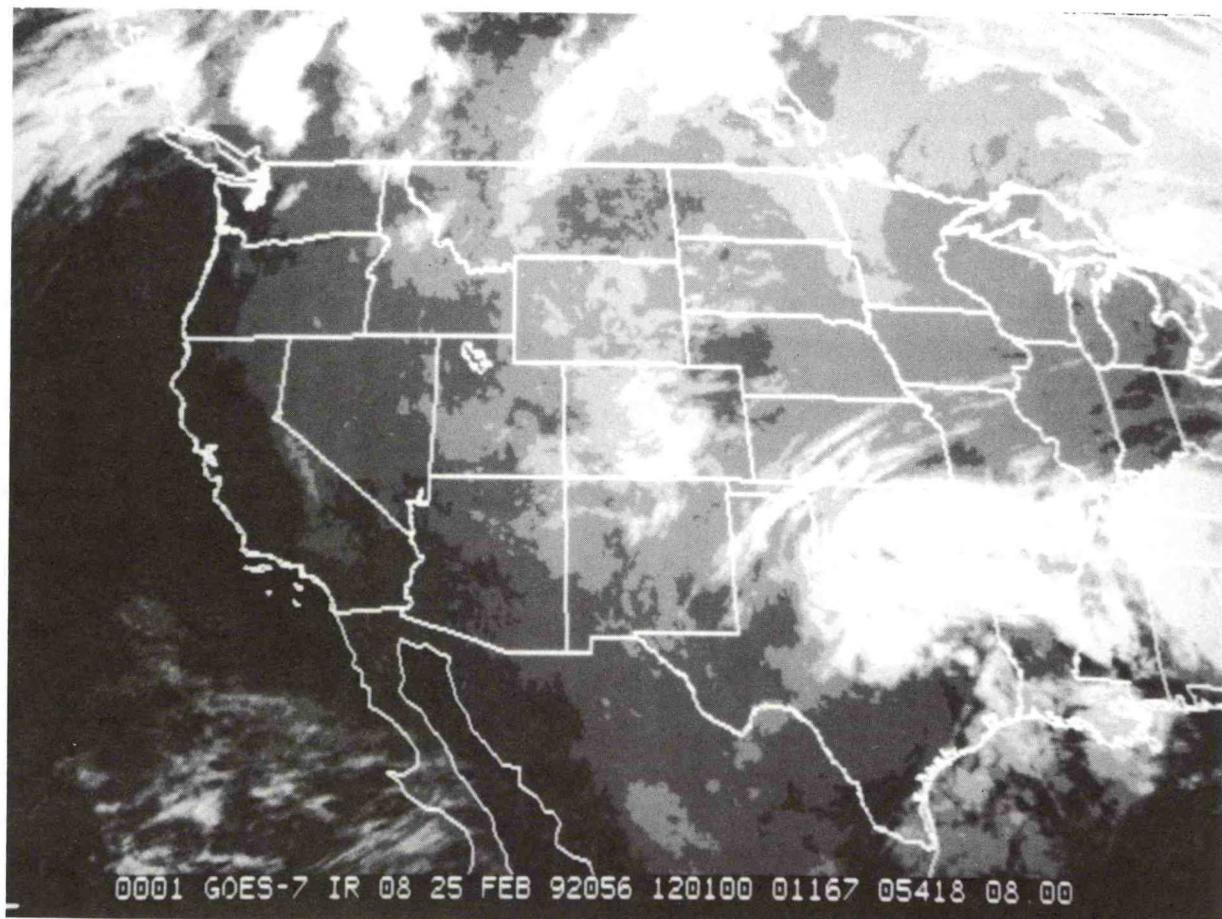
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 38 of 42 stations reported; 1 station intermittent.     |
|                 | AWOS  | 47 of 47 stations reported; 2 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 6 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported.                             |
|                 | SAO   | 395 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 13 of 13 stations reported; 2 stations intermittent.    |

**NOTES:**


**WEATHER SUMMARY****25 February 1992**


A large high pressure area has moved into the STORM-FEST domain, and dominated the weather. The low pressure-center and associated cold front that was the focus of IOP 11 was located over Michigan with a cold front extending down through Ohio, Kentucky, Tennessee, Louisiana and southern Texas. Intense overrunning over the shallow cold air caused moderately heavy stratiform rainfall in southern Arkansas and western Texas.

A deep trough at 500 mb located over Texas was expected to continue moving slowly eastward, although the shortwave over the four corners area was expected to push the trough further south.

Over the next 24- to 48-h a ridge will continue to build into the area. A new shortwave was expected to dive down from Canada into southern Iowa by 1200 UTC tomorrow, 26 February, that could bring snow, and additional cold air into the STORM-FEST domain. No significant weather was expected with this event.

TUESDAY, FEBRUARY 25, 1992





**OPERATIONS SUMMARY****25 February 1992**

IOP 11 terminated at 0100 UTC today, with the end of NWS inner domain and CLASS soundings and the aircraft landing at Richards-Gebaur AFB.

Just to keep things in a constant state of "flux", IOP 12 began at 1200 UTC today to investigate the clear air boundary layer structure in the boundary layer domain. This IOP was scheduled to continue until 0000 UTC, 26 February. Supplemental soundings were taken from Seneca at 1200, 1500, 1800, 1930, 2100, 2230 and 0000 UTC. Both the CP-3 and CP-4 radars collected clear air data during this period with CP-3 collecting data from 1703 to 2216 UTC and CP-4 collecting data from 1833 to 2200 UTC. The following aircraft flew missions during IOP 12:

1729 UTC      The NCAR King Air took off at 1729 UTC to measure the budgets of sensible heat and momentum and compare them with those derived from the boundary layer Profilers. The aircraft flew an "L" pattern, one level box and one set of crosswind stacks; all flown within the mixed layer. Aircraft soundings were taken at different times during the flight to monitor the mixed layer depth. The aircraft landed at 2126 UTC.

1758 UTC      The ER-2 took off at 1758 UTC, collecting radiance measurements in the STORM-FEST boundary layer array. The ER-2 made three passes over the array and the Seneca CLASS site. The times of the passes were approximately 2000, 2020, and 2130 UTC. The ER-2 also made two horizontal legs across clear skies in northern Kansas. At the end of the flight, (2200-2230 UTC), the ER-2 overflow CLASS sites in Kearney, Nebraska, and Hays, Kansas, followed by a flight leg south across clear sky in the Texas panhandle. All instruments were functioning for this mission. The aircraft landed at 0038 UTC, 26 February.

**Other Activities:**

Tomorrow, 26 February has been scheduled as a hard down for the Project. As always though, a daily briefing was scheduled for 1830 UTC.

## STORM-FEST HOURLY COLLECTION OF DATA

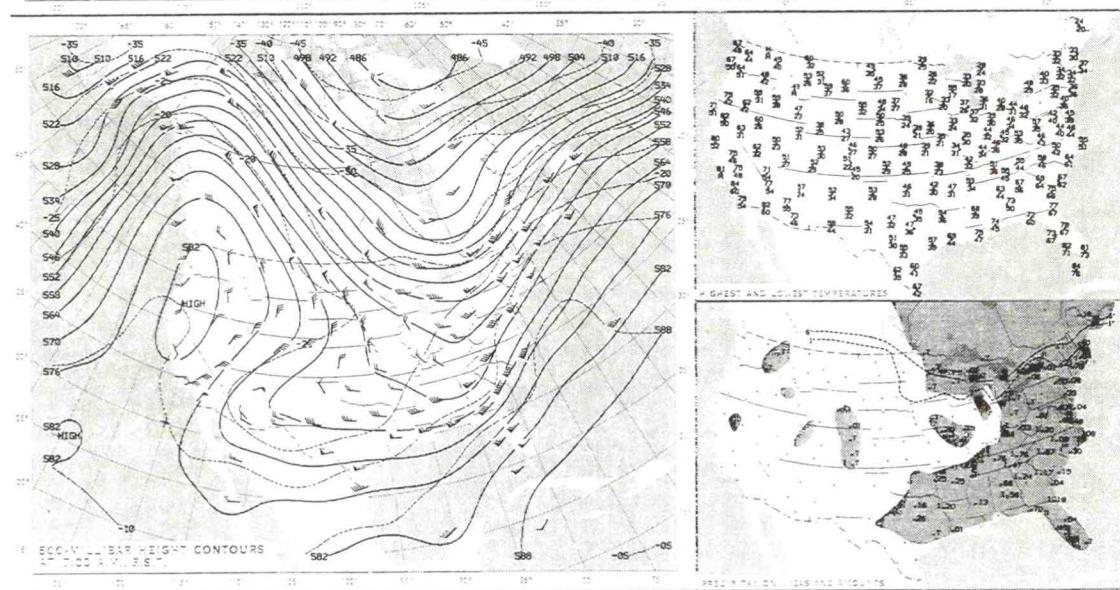
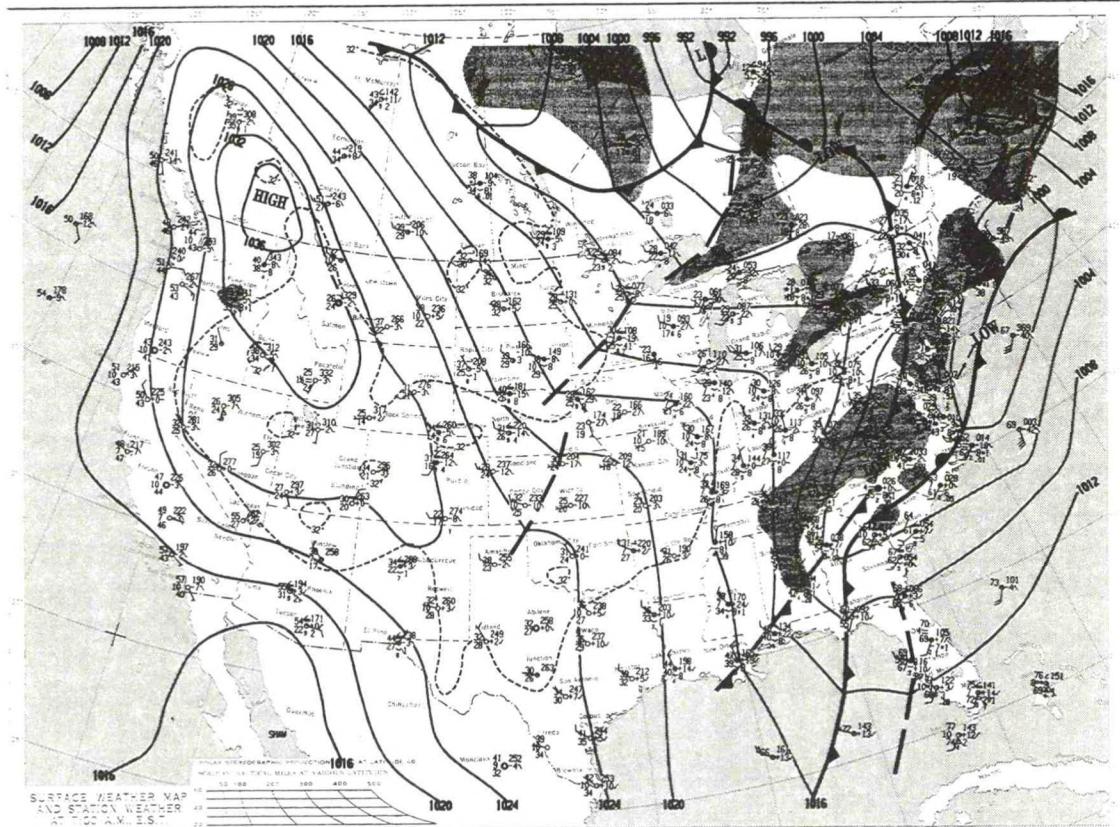
Date: 25 February  
Julian Day: 56

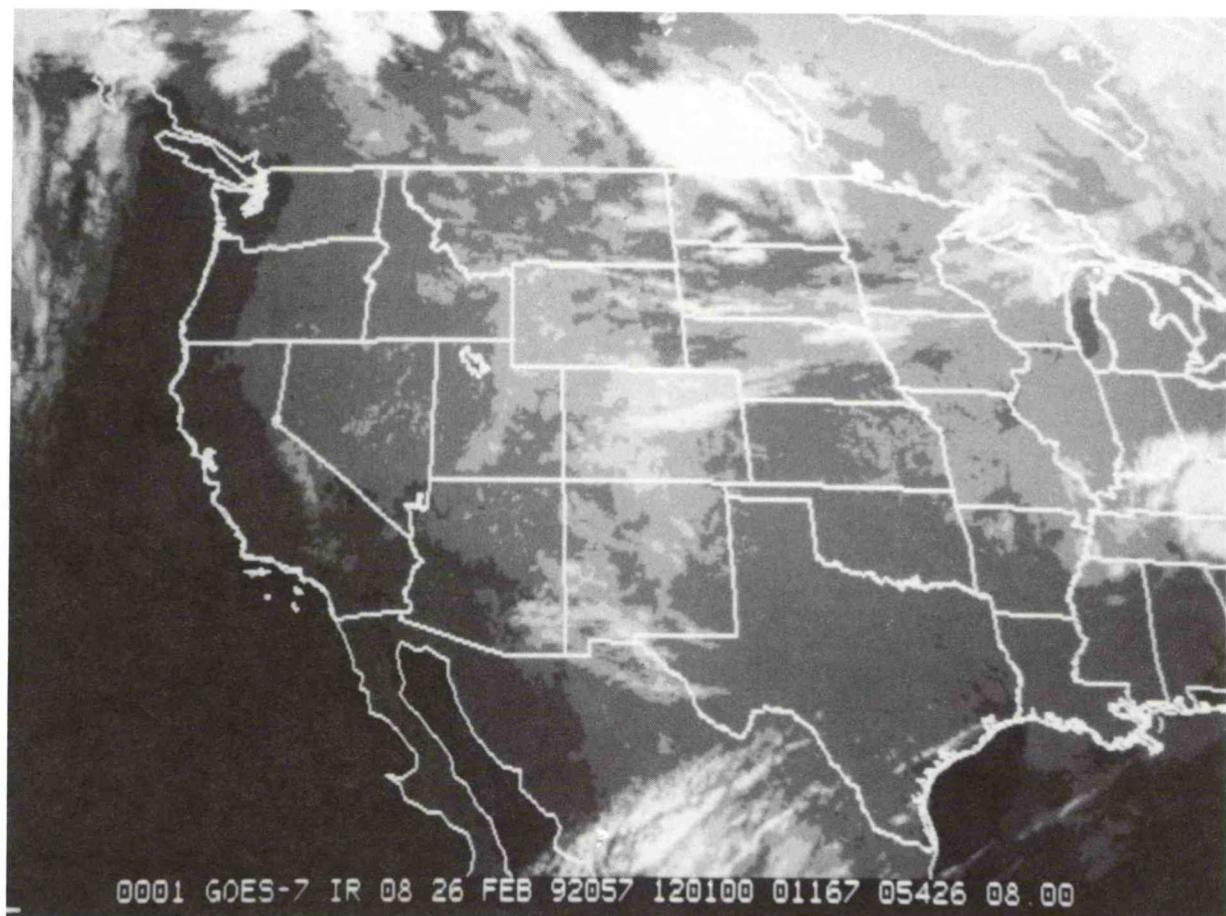
Time (UTC)

| DATA TYPE | SOURCE              | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00      |     |
|-----------|---------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---------|-----|
| IOP       |                     | /  |    |    |    |    |    |    |    |    |    |    |    | /  | /  | /  | /  | /  | /  | /  | /  | /  | /  | /  | /  | IOP #12 |     |
| UPPER AIR | CLASS               | 10 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         | 2 1 |
|           | NWS (Inner)         | 21 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 22 |    |    |    |    |    |         |     |
|           | NWS(Outer)          | 11 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 11 |    |    |    |    |    |         |     |
|           | Picket Fence        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |     |
|           | Canadian            | 9  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 9  |    |    |    |    |    |         |     |
|           | Ft. Sill            |    | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  |         |     |
|           | Flatlands           |    | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  |         |     |
|           | Seneca              |    | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  |         |     |
|           | HIS                 | ■  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |     |
|           | BL Profiler (RASS)  | ←  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 3  | →  |    |    |    |    |         |     |
|           | BL Profiler (Winds) | ←  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 4  | →  |    |    |    |    |         |     |
| RADAR     | CP-3                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |     |
|           | CP-4                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |     |
|           | Mile High           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |     |
|           | CHILL               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |     |
|           | HOT                 |    |    | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  | ■  |         |     |
|           | Cimarron            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |     |
|           | KOUN                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |     |
|           | KFDR                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |     |
|           | KOKC                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |     |
|           | St. Louis           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |     |
|           | Grand Island        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |     |
| AIRCRAFT  | NOAA P-3            | ■  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |     |
|           | NCAR KA             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |     |
|           | UWYO KA             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |     |
|           | UW C-131            | ■  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |     |
|           | NASA ER-2           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |     |
| SATELLITE | GOES RISOP          | ■  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |     |
|           | NOAA                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | ▲  |    |    |    |    |         |     |
|           |                     | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00      |     |

Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 38 of 42 stations reported; 1 station intermittent.     |
|                 | AWOS  | 47 of 47 stations reported; 3 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 8 stations intermittent.    |
|                 | PROFS | 21 of 22 stations reported.                             |
|                 | SAO   | 393 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 13 of 13 stations reported; 1 station intermittent.     |



**NOTES:**


**WEATHER SUMMARY****26 February 1992**

A large high pressure area and northwest flow dominated the STORM-FEST domain. A weak trough existed through the center of the STORM-FEST domain, although there was no weather associated with it. A deep trough was still present over the southwest part of the U.S. and was expected to slowly dissipate over the next several days.

Over the next 24- to 36-h this pattern was not expected to change. There was a slight possibility that there could be some very light precipitation over the Kansas/Missouri area as this surface trough and upper-level shortwave moved through the area.

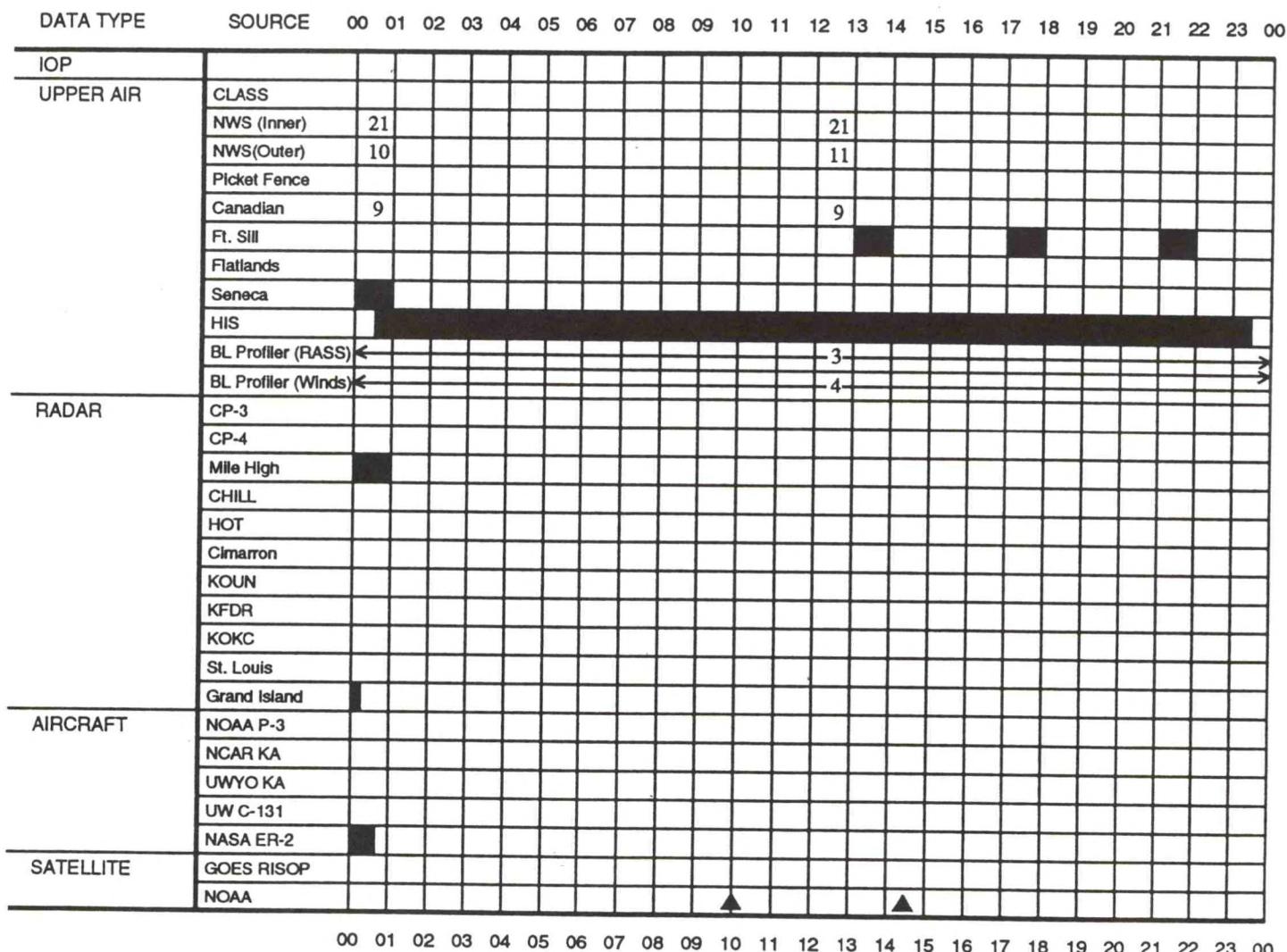
WEDNESDAY, FEBRUARY 26, 1992





**OPERATIONS SUMMARY**

**26 February 1992**


Today was a project down day, with no operations planned. Since this general atmospheric pattern was expected to continue for at least the next 24-h, a clear air boundary layer study was planned for tomorrow, 27 February. Operations will involve the NCAR King Air, the Seneca CLASS, and the CP-3 and CP-4 radars. Seneca, will begin CLASS releases at 1500 UTC, and all other operations including the King Air Aircraft were scheduled to begin at 1730 UTC.

# STORM-FEST

## HOURLY COLLECTION OF DATA

Date: 26 February  
 Julian Day: 57

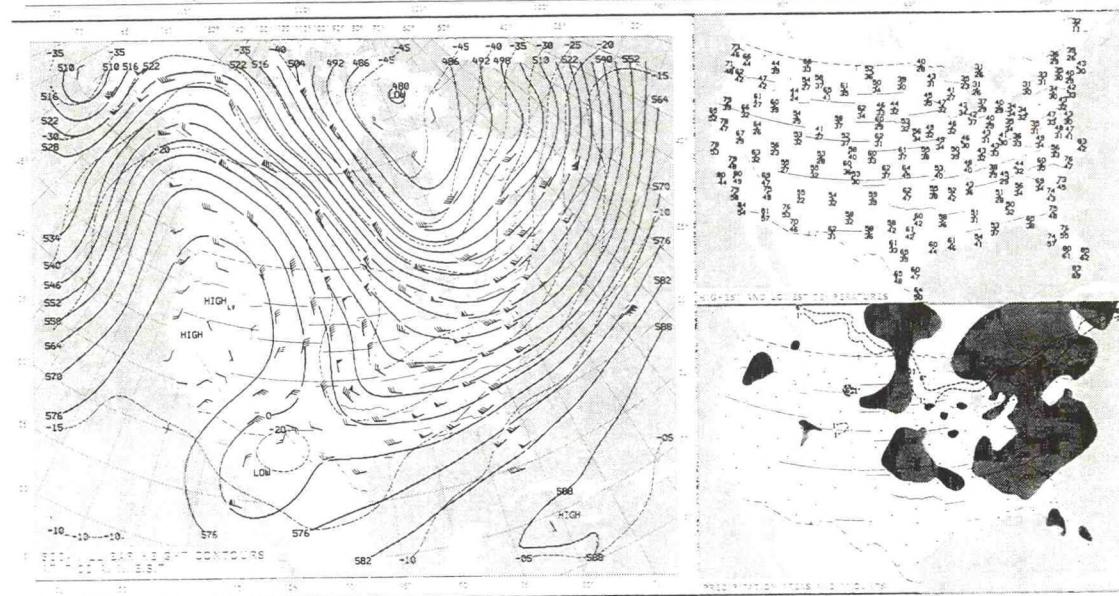
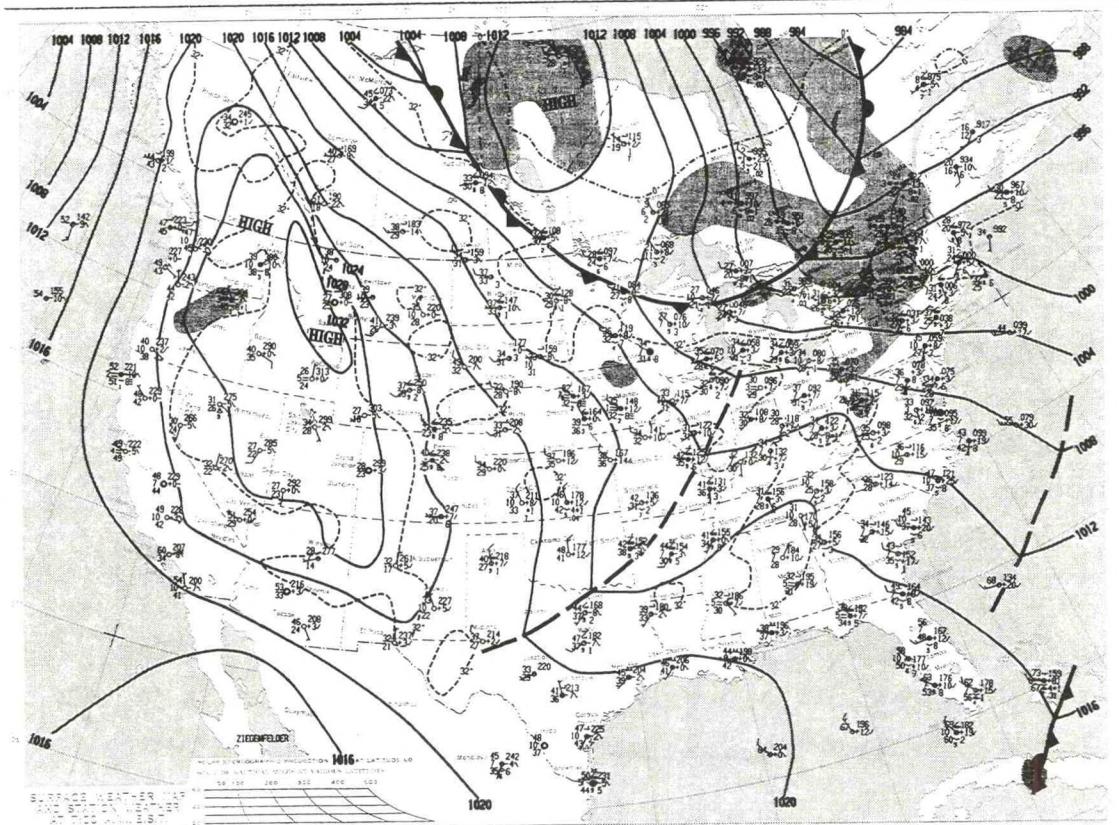
Time (UTC)

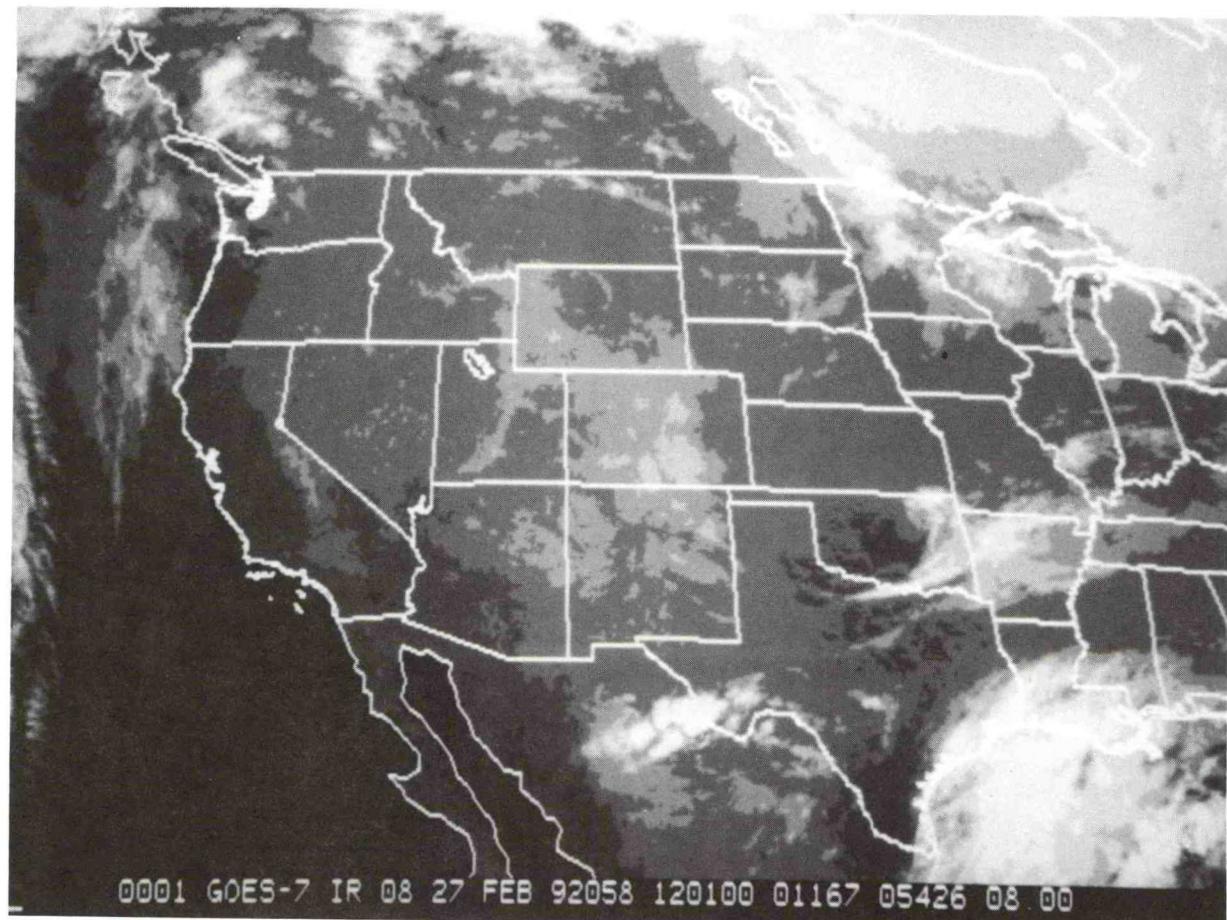


00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

Comments

|                    |       |                                                         |
|--------------------|-------|---------------------------------------------------------|
| SURFACE<br>SYSTEMS | ASOS  | 38 of 42 stations reported.                             |
|                    | AWOS  | 47 of 47 stations reported; 4 stations intermittent.    |
|                    | HPCN  | 73 of 73 stations reported; 2 stations intermittent.    |
|                    | ISWS  | 19 of 19 stations reported.                             |
|                    | PAM5  | 35 of 35 stations reported; 7 stations intermittent.    |
|                    | PROFS | 22 of 22 stations reported; 2 stations intermittent.    |
|                    | SAO   | 390 of 410 stations reported; 65 stations intermittent. |
|                    | WDPN  | 13 of 13 stations reported.                             |



**NOTES:**


**WEATHER SUMMARY****27 February 1992**

As discussed yesterday, 26 February, the weather over the STORM-FEST domain was still dominated by the strong surface high pressure area over the northwest United States, with northwest flow over the STORM-FEST domain. Winds were expected to increase during the afternoon over the boundary layer array and the weather should be conducive for a nighttime radiation flight tomorrow night, 28 February.

Little change was expected over the next 24 -to 48-h. A weak shortwave was forecast to cross the Great Lakes which should push a weak front into the northeast part of the STORM-FEST domain, but there should be little weather associated with it. The MM-4 model places the front across Kansas in 48-h.

THURSDAY, FEBRUARY 27, 1992





**OPERATIONS SUMMARY****27 February 1992**

IOP 13 started today at 1500 UTC with supplemental soundings from the Seneca CLASS site. These were scheduled to continue until 0000 UTC (28 February). The primary objective of this IOP was to intercompare aircraft data with data from the boundary layer array and the Doppler radars to characterize the boundary layer structure and fluxes. The CP-4 radar began collecting clear air data at 1735 UTC, continuing until 2235 UTC. (CP-3 radar was down for repairs.)

At 1730 UTC the NCAR King Air took off from Richards-Gebaur AFB flying a set of 4 crosswind flux legs, a clockwise circumnavigation of the boundary layer array (crossing over the four outer Profilers), and a second set of crosswind flux legs. Aircraft soundings were interspersed with these patterns to check the inversion height. The aircraft landed at Richards-Gebaur AFB at 2138 UTC.

**Other Activities:**

There was some discussion about conducting a research flight tomorrow, to diagnose the jet exit region that was expected to be over the STORM-FEST domain.

## STORM-FEST HOURLY COLLECTION OF DATA

Date: 27 FebruaryJulian Day: 58

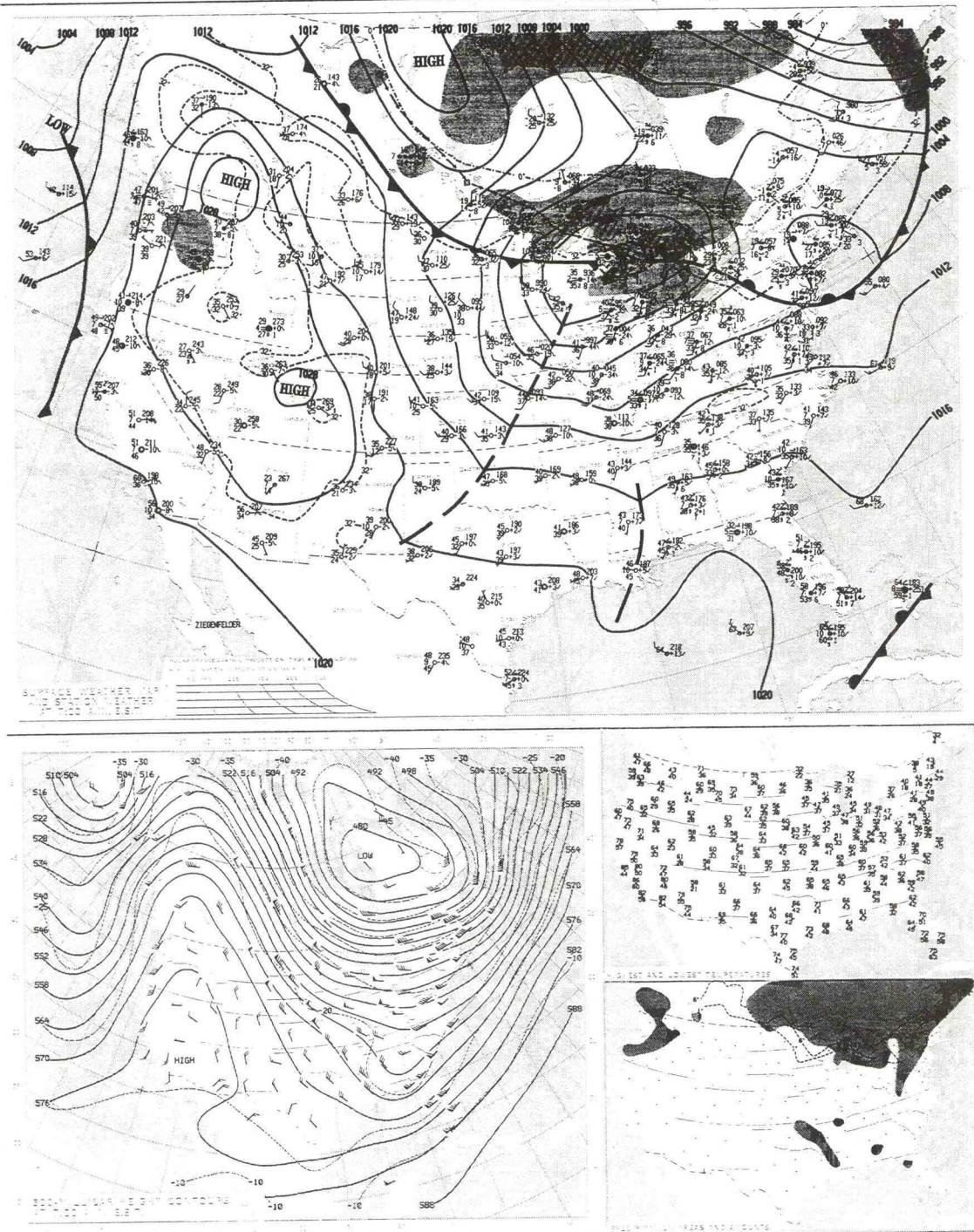
Time (UTC)

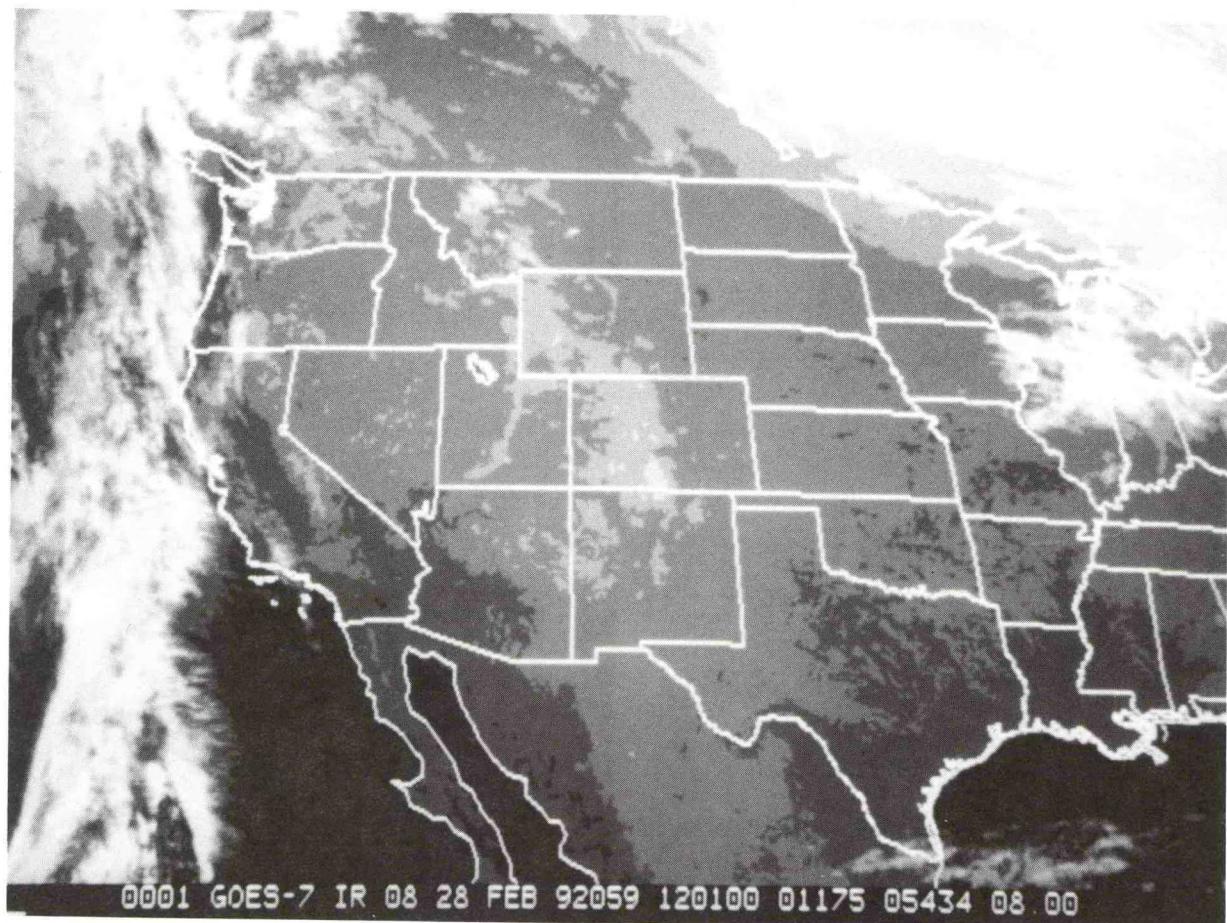
| DATA TYPE | SOURCE                | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00      |
|-----------|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---------|
| IOP       |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | IOP #13 |
| UPPER AIR | CLASS                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | NWS (Inner)           | 22 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | NWS(Outer)            | 11 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | Picket Fence          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | Canadian              | 9  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | Ft. Sill              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | Flatlands             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | Seneca                |    | █  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | HIS                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | BL Profiler (RASS) ←  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 5  |    |    |    |    |    |    |    | →       |
|           | BL Profiler (Winds) ← |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 5  |    |    |    |    |    |    |    | →       |
| RADAR     | CP-3                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | CP-4                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | Mile High             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | CHILL                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | HOT                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | Cimarron              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | KOUN                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | KFDR                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | KOKC                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | St. Louis             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | Grand Island          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
| AIRCRAFT  | NOAA P-3              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | NCAR KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | UWYO KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | UW C-131              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | NASA ER-2             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
| SATELLITE | GOES RISOP            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | NOAA                  |    |    | ▲  |    |    |    |    |    |    |    |    |    |    |    |    | ▲  |    |    |    |    |    |    |    |    |         |

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

## Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 38 of 42 stations reported.                             |
|                 | AWOS  | 45 of 47 stations reported; 6 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported; 2 stations intermittent.    |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 10 stations intermittent.   |
|                 | PROFS | 22 of 22 stations reported.                             |
|                 | SAO   | 396 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 13 of 13 stations reported; 2 stations intermittent.    |


**NOTES:**


**WEATHER SUMMARY****28 February 1992**

Although not indicated on the 1200 UTC surface analysis, there was a weak cold front moving from northwest to southeast through the STORM-FEST domain, in response to an Alberta clipper moving down the back side of the trough. Cooler temperatures and gusty winds were associated with the frontal passage. The front was expected to be through the STORM-FEST domain by 0600 UTC, 29 February.

Over the next 24- to 48-h, the western half of the STORM-FEST domain should remain warm and dry; with a weak warm front through the middle of the domain. Little interesting weather was forecasted for STORM-FEST until the middle of next week (3-5 March).

FRIDAY, FEBRUARY 28, 1992





**OPERATIONS SUMMARY****28 February 1992**

IOP 14 began at 2300 UTC with the takeoff of the University of Wyoming King Air aircraft. The purpose of this mission was to test the procedures developed by John Marwitz to follow air parcels and diagnose accelerations (Lagrangian dynamics). The mission focused on the jet-exit region in moderate cyclonic streamline curvature that was over southern Iowa, western Illinois and northern Missouri.

The jet appeared well defined ( $57 \text{ m s}^{-1}$ ), but cross-stream shears were weak. The most dramatic horizontal gradient was in the ozone concentration, which changed by a factor of four between the troposphere and stratosphere. The aircraft landed at 0356 UTC (29 February).

As noted by Dan Keyser (aircraft scientist) in addition to the Lagrangian dynamics experiment, this mission offered the opportunity to analyze the along-jet variability at the 29 kft. level, and to assess the ageostrophic wind at the 29k and 28 kft. levels. One could then compare the ageostrophic winds with their counterparts from the MAPS, NGM and MM-4 analyses.

CLASS soundings supporting this flight were taken at 0000 UTC and 0300 UTC, 29 February, from Storm Lake and Iowa City, IA.

**Other Activities:**

The NCAR King Air took off at 2350 UTC to fly the last of the radiation flights for Jim Telford. (See 5 February Operations Summary for review of radiation mission objectives.) The final flight landed at 0913 UTC (29 February).

# STORM-FEST

## HOURLY COLLECTION OF DATA

Date: 28 February  
 Julian Day: 59

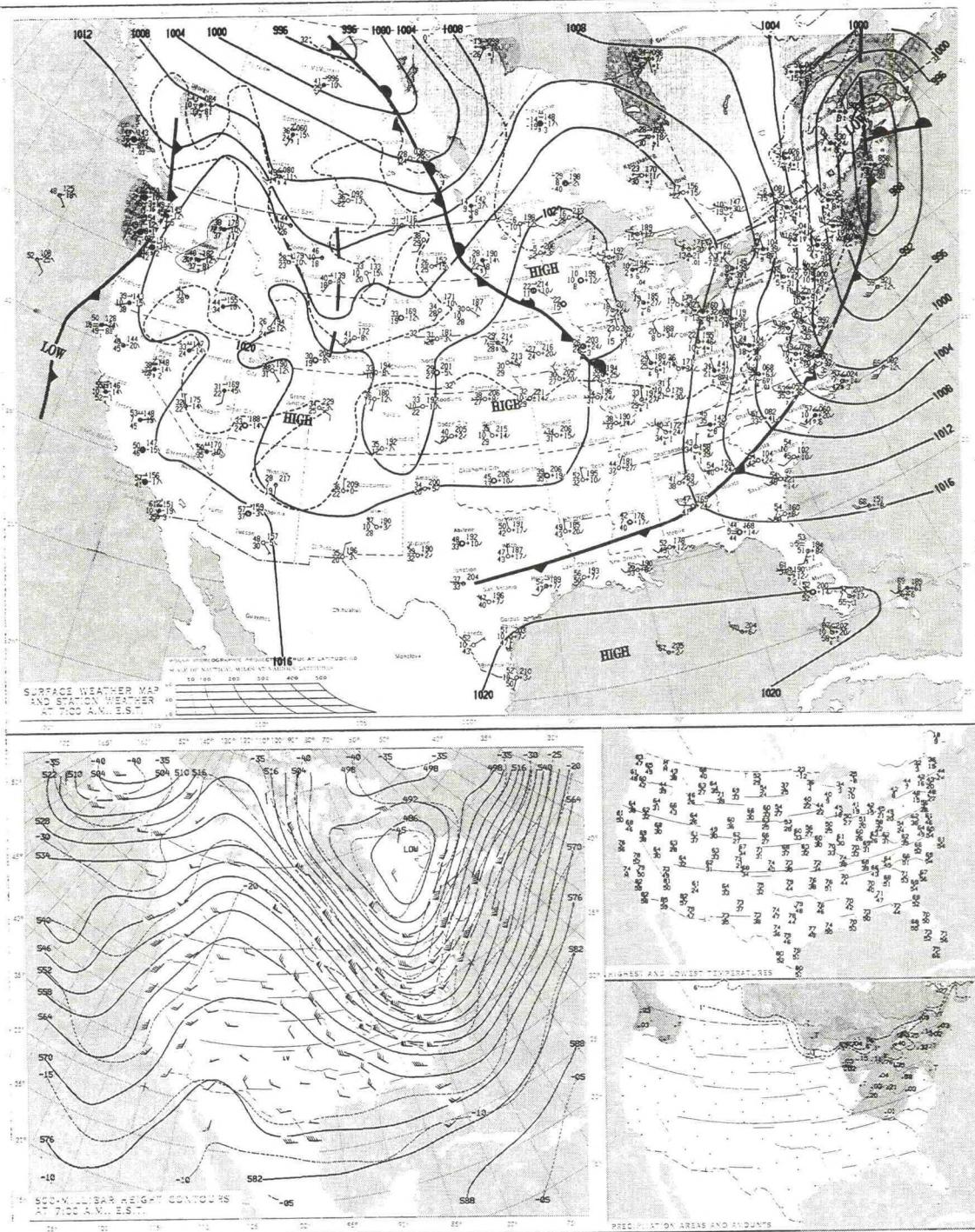
Time (UTC)

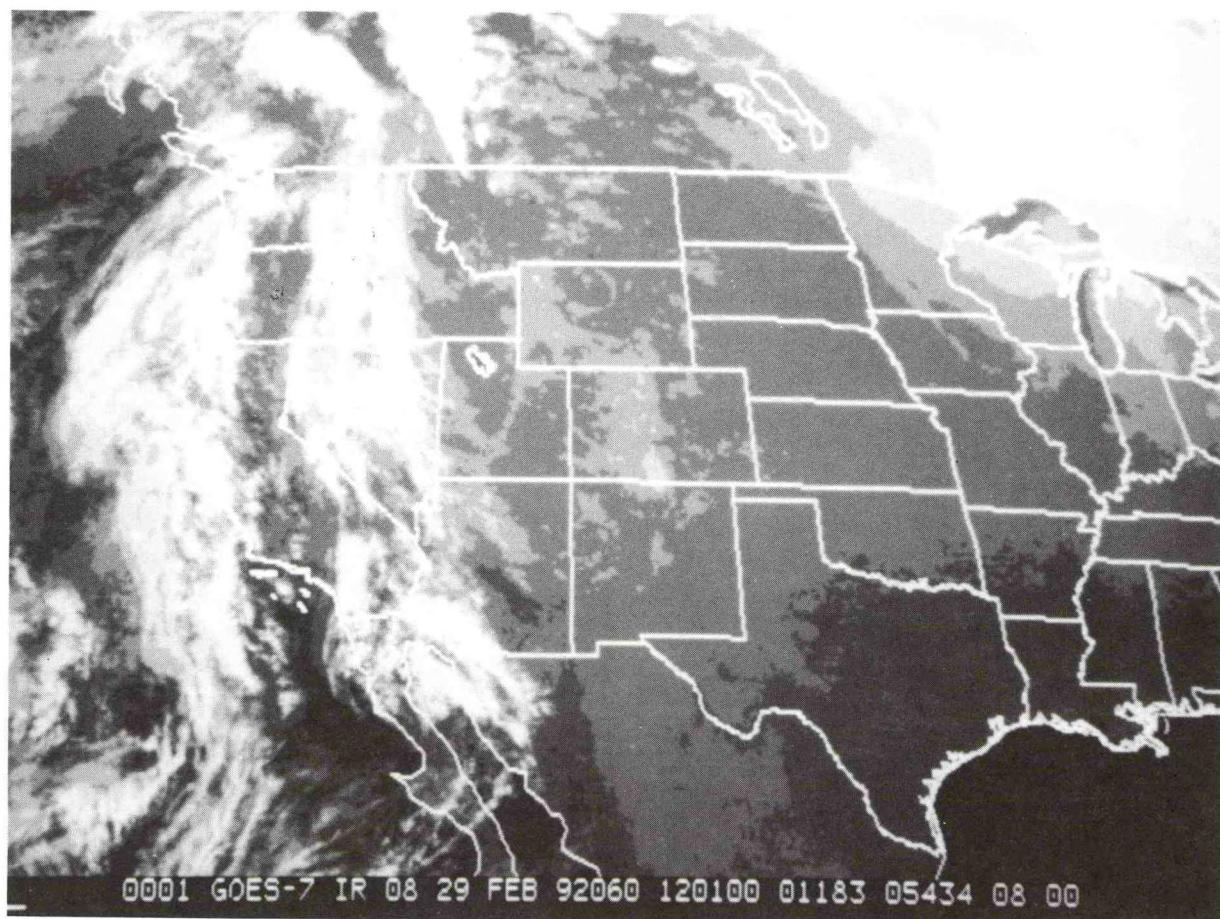
| DATA TYPE | SOURCE                | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00  |
|-----------|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|
| IOP       |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
| UPPER AIR | CLASS                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | #14 |
|           | NWS (Inner)           | 22 |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 21 |    |    |    |    |    |    |    |    |     |
|           | NWS(Outer)            | 11 |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 11 |    |    |    |    |    |    |    |    |     |
|           | Picket Fence          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|           | Canadian              | 9  |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 9  |    |    |    |    |    |    |    |    |     |
|           | Fl. Sill              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|           | Flatlands             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|           | Seneca                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|           | HIS                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|           | BL Profiler (RASS) <  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 5  |    |    |    |    |    |    |    |    |     |
|           | BL Profiler (Winds) < |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 5  |    |    |    |    |    |    |    |    | →   |
| RADAR     | CP-3                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|           | CP-4                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|           | Mile High             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|           | CHILL                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|           | HOT                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|           | Cimarron              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|           | KOUN                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|           | KFDR                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|           | KOKC                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|           | St. Louis             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|           | Grand Island          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
| AIRCRAFT  | NOAA P-3              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|           | NCAR KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|           | UWYO KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|           | UW C-131              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|           | NASA ER-2             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
| SATELLITE | GOES RISOP            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|           | NOAA                  |    | ▲  |    |    |    |    |    |    |    |    |    |    |    |    | ▲  |    |    |    | ▲  |    |    |    |    | ▲  |     |
|           |                       | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00  |

Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 38 of 42 stations reported.                             |
|                 | AWOS  | 45 of 47 stations reported; 21 stations intermittent.   |
|                 | HPCN  | 73 of 73 stations reported; 1 station intermittent.     |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 15 stations intermittent.   |
|                 | PROFS | 22 of 22 stations reported; 1 station intermittent.     |
|                 | SAO   | 394 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported.                             |

**NOTES:**


## WEATHER SUMMARY


29 February 1992

A diffuse high pressure area covered most of the STORM-FEST domain. Light winds and relatively warm temperatures dominated the area. Southwesterly winds were expected to increase over the area in the next 24- to 36-h and will be the dominant conditions for a (one more folks) boundary layer IOP scheduled for 1 March.

The next major weather issue was how the storm system now off the west coast was going to develop and would it move into the STORM-FEST domain or further south.

SATURDAY, FEBRUARY 29, 1992





## OPERATIONS SUMMARY

29 February 1992

After both the University of Wyoming (0356 UTC) and NCAR King Air (0913 UTC) aircraft landed as part of IOP 14 and the radiation mission ended, no other operations were conducted. Planning still continued for the boundary layer IOP (15) for tomorrow, 1 March. In addition, scientists began to look at the timing for operations on the next weather system, that was expected to move into the STORM-FEST domain on or about 3 March.

## STORM-FEST HOURLY COLLECTION OF DATA

Date: 29 February  
Julian Day: 60

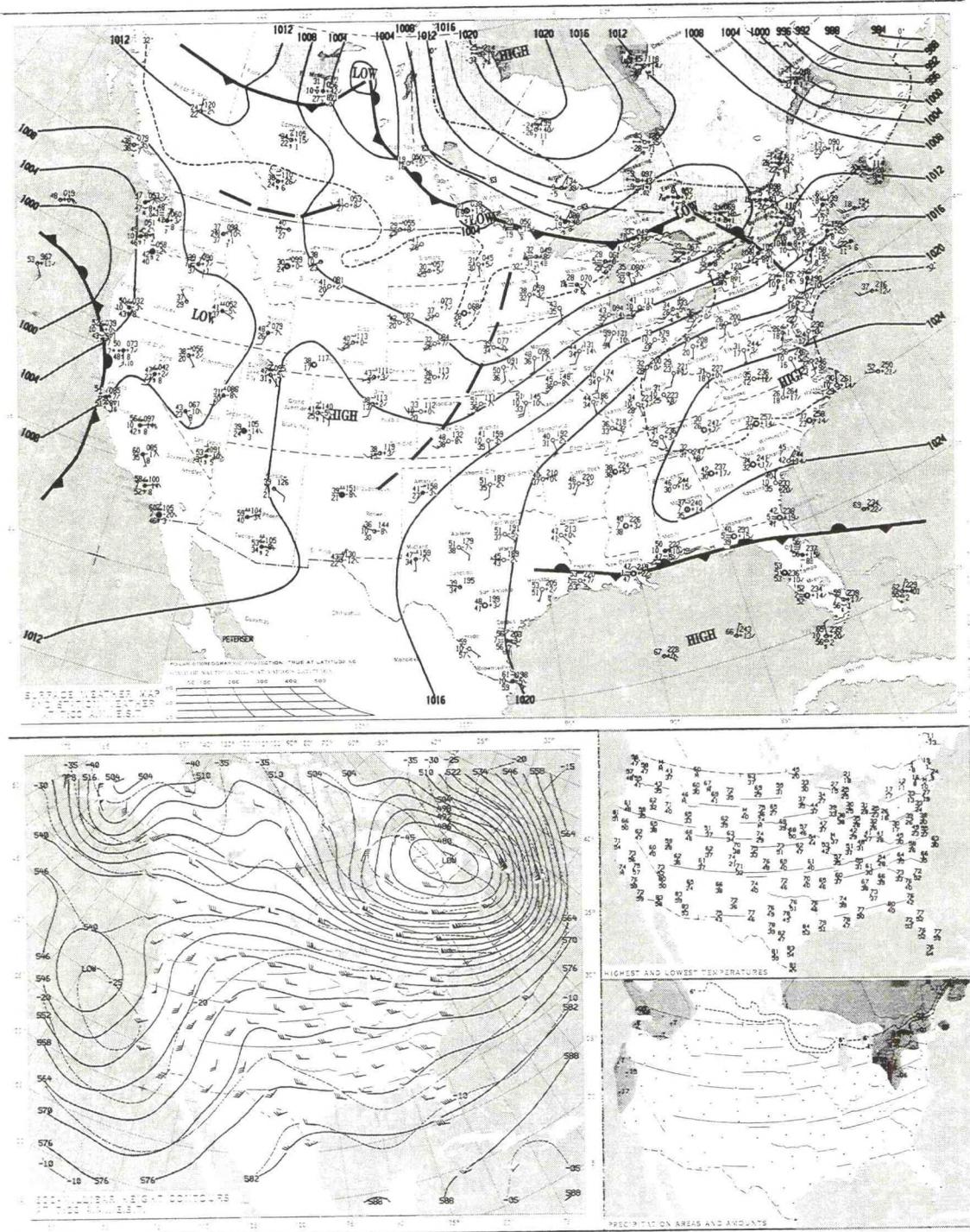
Time (UTC)

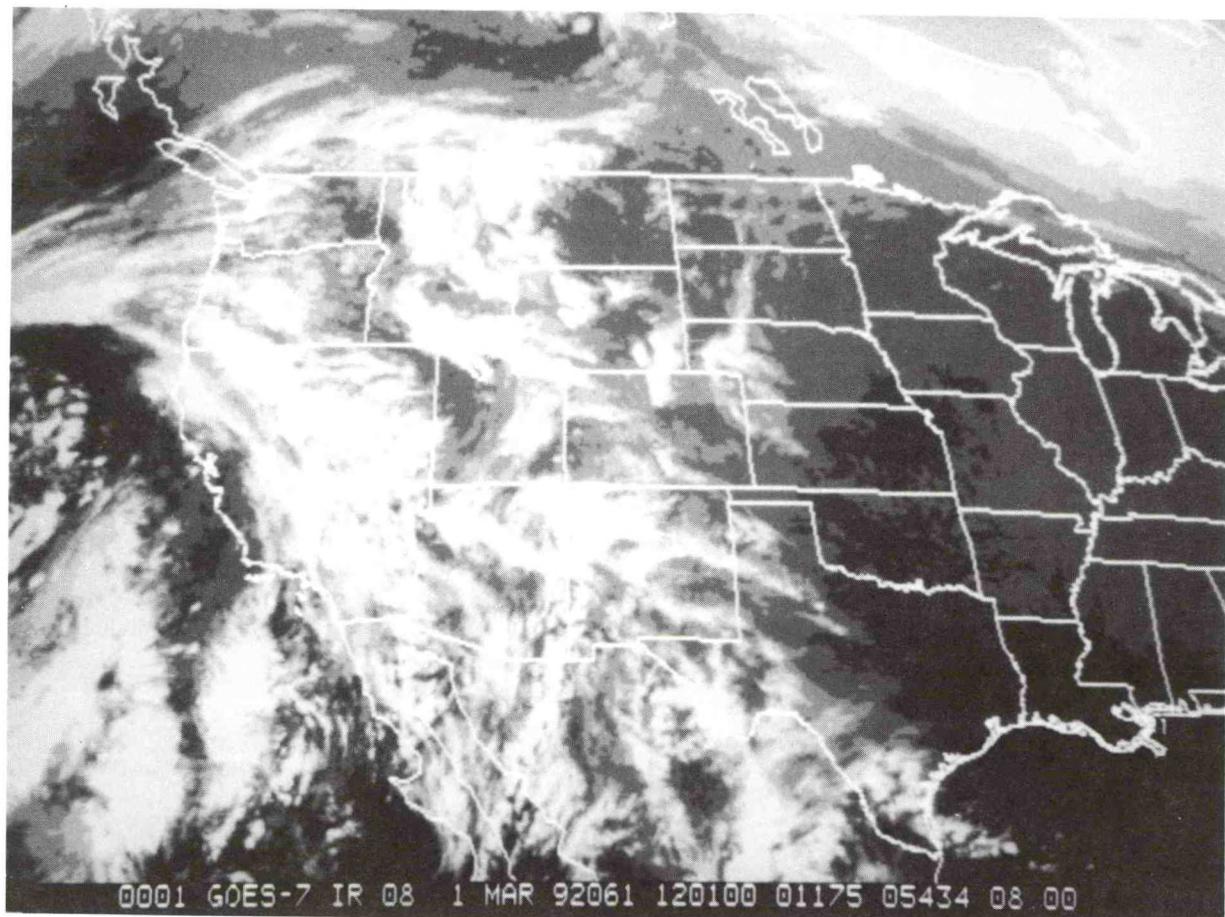
| DATA TYPE | SOURCE                | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| IOP       |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| UPPER AIR |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | IOP #14               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CLASS                 | 2  |    |    |    | 2  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NWS (Inner)           | 22 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 20 |
|           | NWS(Outer)            | 11 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 11 |
|           | Picket Fence          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Canadian              | 9  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 9  |
|           | R. Sill               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Flatlands             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Seneca                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | HIS                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | BL Profiler (RASS) <  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 5  |
|           | BL Profiler (Winds) < |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 4  |
| RADAR     |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CP-3                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CP-4                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Mile High             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CHILL                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | HOT                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Cimarron              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KOUN                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KFDR                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KOKC                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | St. Louis             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Grand Island          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| AIRCRAFT  |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NOAA P-3              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NCAR KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | UWYO KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | UW C-131              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NASA ER-2             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| SATELLITE |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | GOES RISOP            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NOAA                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

### Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 38 of 42 stations reported; 1 station intermittent.     |
|                 | AWOS  | 46 of 47 stations reported; 23 stations intermittent.   |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 9 stations intermittent.    |
|                 | PROFS | 22 of 22 stations reported; 10 stations intermittent.   |
|                 | SAO   | 389 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported.                             |


**NOTES:**


**WEATHER SUMMARY****1 March 1992**

Fair skies existed over the entire STORM-FEST domain with relatively strong low-level winds from the south and southwest over the eastern portion of the STORM-FEST domain and weak westerly winds over the western portion of the domain.

The strong Pacific system seen at 1200 UTC should be closing off in the northern Baja region, with increasing diffluent southwest flow aloft. Low-level southerly flow in Texas/Oklahoma was expected to increase the low-level moisture from the Gulf of Mexico. The shortwave in the northern branch across southern Canada should develop a weak surface cold front in the northern part of the STORM-FEST domain by 2 March. All this should come together and focus the weather in the STORM-FEST region on or about 2-3 March. Precipitation was expected to begin in the extreme southern part of the domain after 1800 UTC (2 March). By this time, as the front stretches from west-central Kansas through northern Missouri into Illinois, low clouds would likely be increasing from north Texas through Oklahoma.

SUNDAY, MARCH 1, 1992





**OPERATIONS SUMMARY****1 March 1992**

The fair skies and strong southerly winds provided the setting for both a clear air ER-2 flight and a boundary layer study using the NCAR King Air with supplemental CLASS soundings from Seneca. The following operations were carried out today.

0900 UTC The ER-2 launched at 0900 UTC for a HIS mission over the boundary layer network centered at Seneca, Kansas. The scientific objective for this flight was to map the thermodynamic structure of the strong subsidence inversion which typically develops during the night in the Seneca region. The HIS ground-based profiler had shown the presence of a significant inversion the night before, and this feature was expected to develop again. It did and the special CLASS soundings released at Seneca, Kansas, at 1130 UTC and 1230 UTC substantiated it, as well as a strong low-level jet. The MAMS was in place for this flight which added its 3 water vapor channels to the ER-2 instrumentation. The total body of information sampled by airborne and ground-based HIS, MAMS, and the CLASS soundings during this flight was quite impressive and will be useful to the studies of inversion and jet features. This mission was also the first opportunity to fly the MTS in an "upward-looking" mode to calibrate against cold space and to profile above the aircraft.

The second aspect of today's operations was IOP 15 to investigate the boundary layer structure and fluxes in a south wind flow regime.

1500 UTC Five CLASS soundings (some 1.5-h frequency) were released from the Seneca site, from 1500-2230 UTC.

1707 UTC CP-4 became operational to support the NCAR boundary layer flight. The radar conducted alternating exploratory scans and 30° "flux" scans. The "exploratory" scans included low-level PPIs and RHIs. The radar operated until 2208 UTC.

1714 UTC The NCAR King Air Took off to study the boundary-layer structure and fluxes in a south wind regime. Two sets of flights around the boundary-layer region were made with aircraft soundings taken at Powhattan. Because the pattern flown took shorter than expected, the aircraft also flew optional legs at (0.5Z<sub>j</sub>).

Radar flux scans were fairly well synchronized with the first set of flux legs, but were a bit late for the second set of flux legs. Low-level radar scans indicated that the flight pattern was flown in the presence of roll-vortices orientated 240° to 060°, roughly along the mean boundary layer wind. Their presence was consistent with fairly strong winds, which exceeded 20 m/s at flight level at the top of the boundary layer. (The 1800 UTC Seneca CLASS sounding showed a low-level jet of 62 kt.) Airborne observers noted the presence of "wave cloud," which was probably associated with smoke from agricultural burning, since the air was very dry. The inversion was strong and well-defined in the Seneca soundings.  $Z_i$  varied between 3500 ft and 3900 ft msl (2200-2600 agl), at least during the first two-thirds of the flight.

The orientation of the cross-wind flight legs were NW-SE, meaning they were not optimum for crossing the maximum number of rolls, but the pattern was constrained to fly over ASTER and to keep the leg within the Boundary Layer array. In fact, there was some concern that the cross wind legs might not have been long enough. In response to this, the low-level legs in the second set of flights around the boundary-layer domain were flown at full length. The aircraft landed at 2130 UTC.

Clear air radar reflectivity was good out to 70-80 km. The air crew noticed a small number of insects at their altitude.

IOP 15 ended at 0000 UTC (2 March).

#### **Other Activities:**

Plans continued to be developed for the next IOP for the storm system that was expected to affect the STORM-FEST domain on 3-5 March.

# STORM-FEST

## HOURLY COLLECTION OF DATA

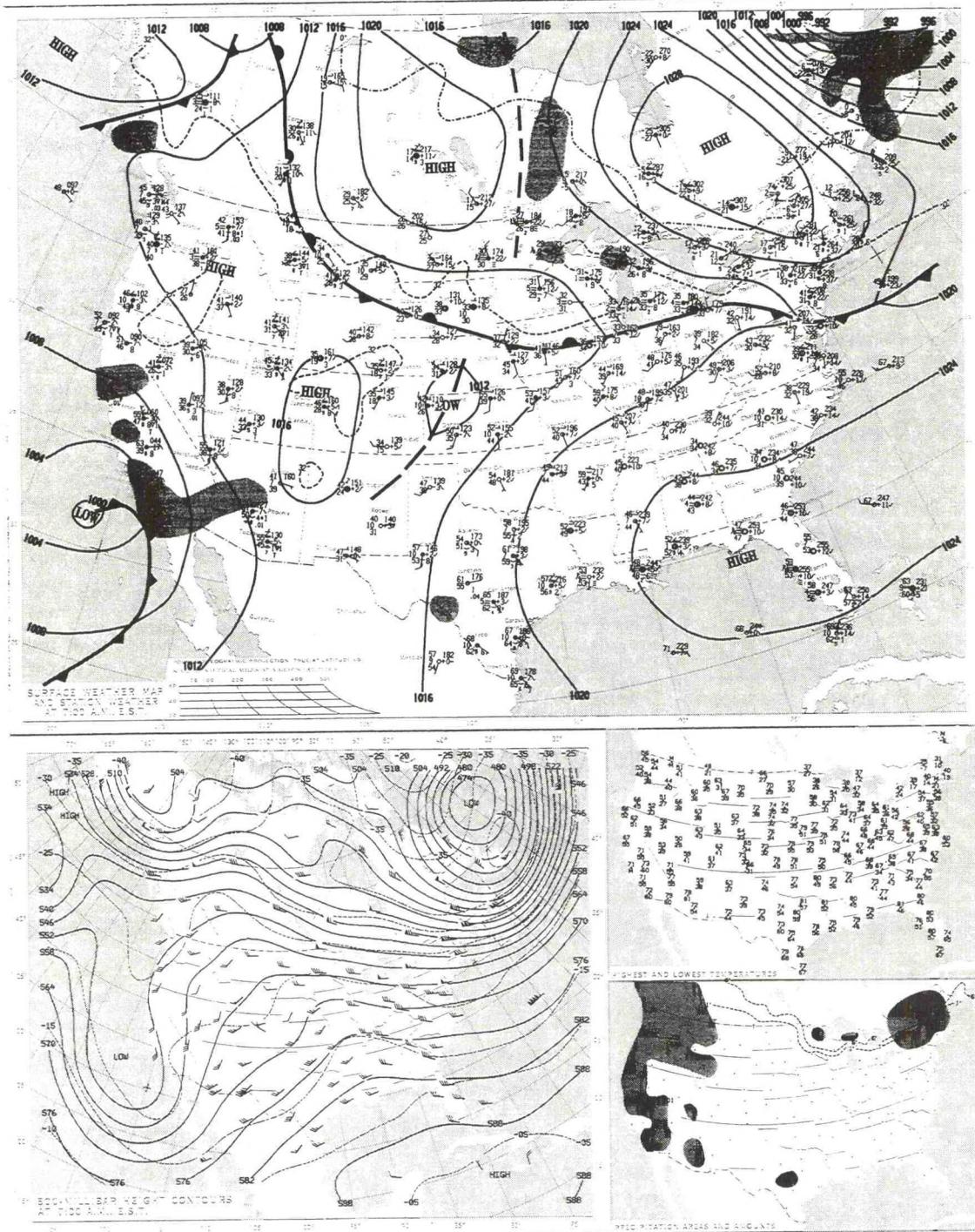
Date: 1 March  
 Julian Day: 61

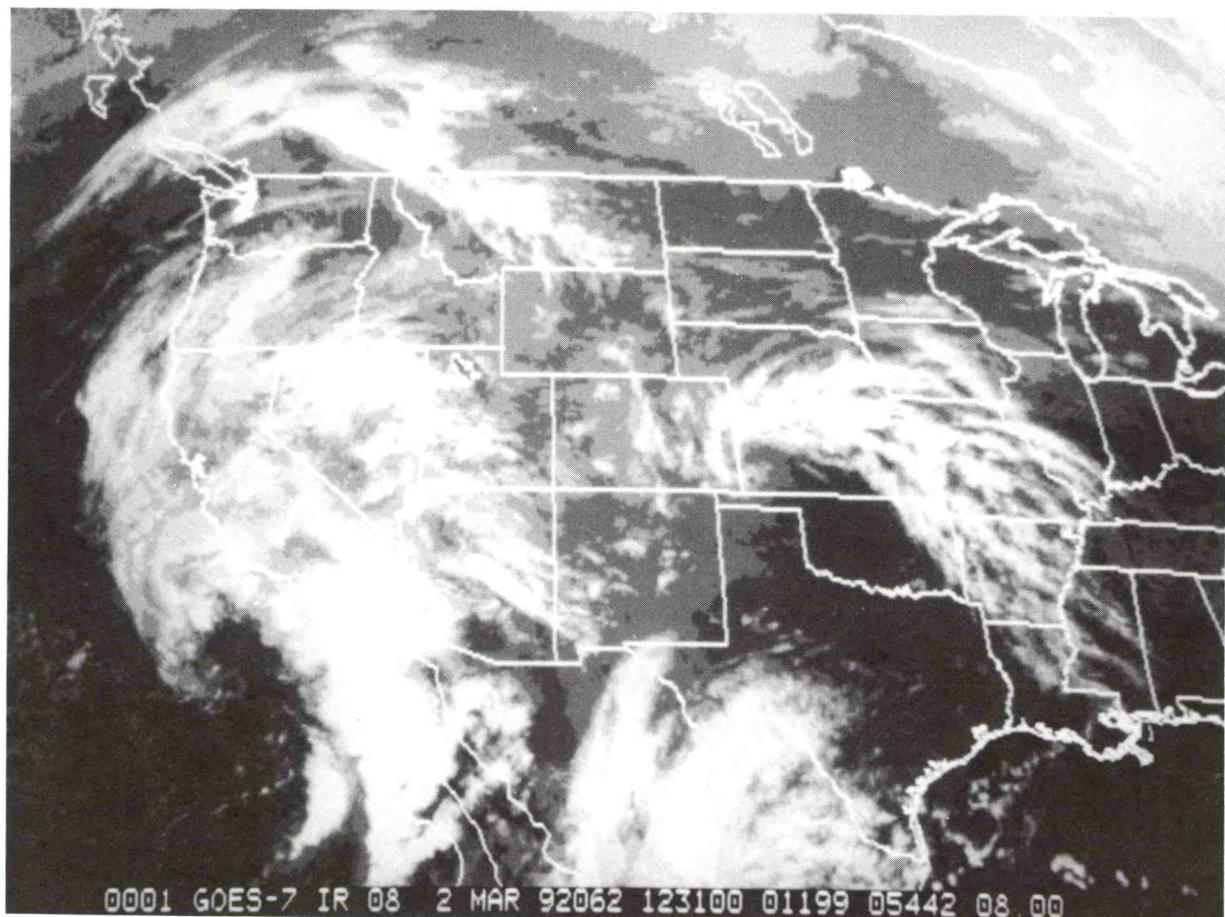
Time (UTC)

| DATA TYPE | SOURCE                | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 | IOP #15 |
|-----------|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---------|
| IOP       |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
| UPPER AIR | CLASS                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | NWS (Inner)           | 22 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 22      |
|           | NWS(Outer)            | 11 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 11      |
|           | Picket Fence          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | Canadian              | 9  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 9       |
|           | Fl. Sill              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | Flatlands             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | Seneca                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | HIS                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | BL Profiler (RASS) <  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 5       |
|           | BL Profiler (Winds) < |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 4       |
| RADAR     | CP-3                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | CP-4                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | Mile High             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | CHILL                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | HOT                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | Cimarron              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | KOUN                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | KFDR                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | KOKC                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | St. Louis             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | Grand Island          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
| AIRCRAFT  | NOAA P-3              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | NCAR KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | UWYO KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | UW C-131              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | NASA ER-2             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
| SATELLITE | GOES RISOP            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           | NOAA                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |         |
|           |                       | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |         |

### Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 38 of 42 stations reported; 1 station intermittent.     |
|                 | AWOS  | 46 of 47 stations reported; 8 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 13 stations intermittent.   |
|                 | PROFS | 22 of 22 stations reported; 3 stations intermittent.    |
|                 | SAO   | 384 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported.                             |


**WEATHER SUMMARY****2 March 1992**


There was still no active weather in the STORM-FEST domain (although conditions were changing). At the surface, a weak stationary front was located across the northern portion of the STORM-FEST domain, 1016 mb high was present over the Rocky Mountains and a surface low was located just off the southern California coast. The upper-level 500 mb trough had dug further south off the California coast and was expected to move into southern California and Arizona by tomorrow, 3 March.

Low-level moisture was moving rapidly northward from the Gulf of Mexico into the southeastern part of Oklahoma. It was expected that shower activity would develop there by morning, 3 March, as a 500 mb shortwave moves across north Texas. It was expected that as this storm moves eastward, the low-level flow in Texas and Oklahoma would become more southeasterly and low-level moisture would be advected toward a developing surface low in extreme northeast New Mexico/southwest Kansas. As the low-level moisture increases in southwest Oklahoma (by 3 March), showers and thunderstorms would be likely to produce as much as 0.25 inches of precipitation.

The model progs indicated that as the upper-level storm system moves eastward and the surface low develops in the Texas panhandle early Tuesday afternoon (3 March), showers and thunderstorms would develop along the dry line in the Texas panhandle. This activity should move into western Oklahoma by 2000 UTC, 3 March. At this time it appears that the cold advection at 500 mb and warm/moist low-level advection would destabilize the atmosphere enough to produce some severe thunderstorms and heavy precipitation. The best six hour time block for precipitation in the Little Washita basin appeared to be from 2000 UTC (3 March) to 0200 UTC (4 March).

MONDAY, MARCH 2, 1992





## **OPERATIONS SUMMARY**

**2 March 1992**

No operations occurred during the day. Planning continued for IOP 16 with NWS inner domain soundings and CLASS soundings scheduled to begin at 1800 UTC, 3 March, and running to 0000 UTC, 5 March. The CP-3 and CP-4 radars were placed on alert to begin operations as early as 1500 UTC, 3 March. First aircraft flights could begin as early as 1200 UTC, 3 March. A briefing at 0400 UTC (3 March) was scheduled.


In preparation for the expected precipitation in Oklahoma, Oklahoma City (KOKE) WSR-88D radar began collecting Archive II data at 2330 UTC.

**STORM-FEST**  
**HOURLY COLLECTION OF DATA**

Date: 2 March  
Julian Day: 62

Time (UTC)

| DATA TYPE | SOURCE | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

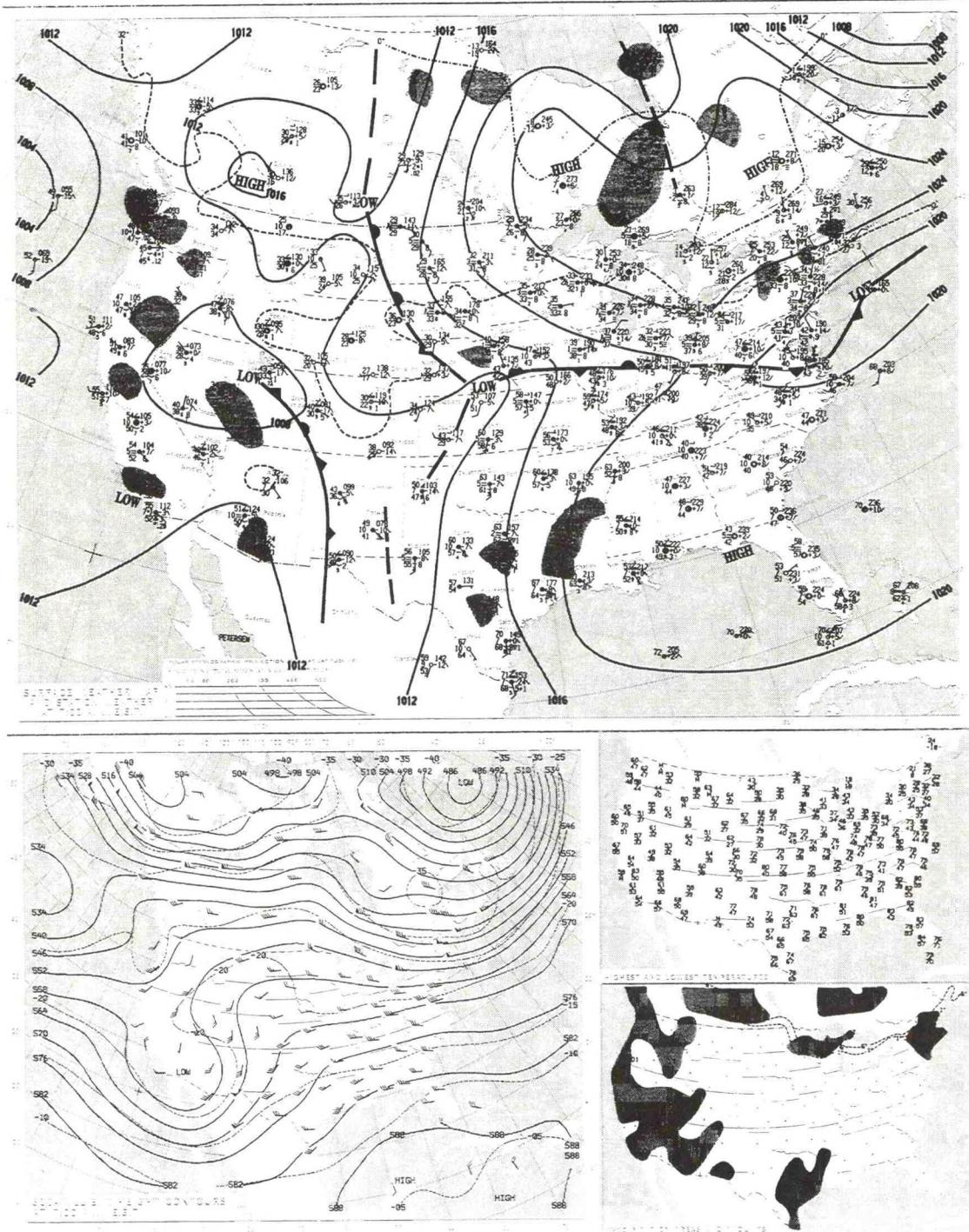


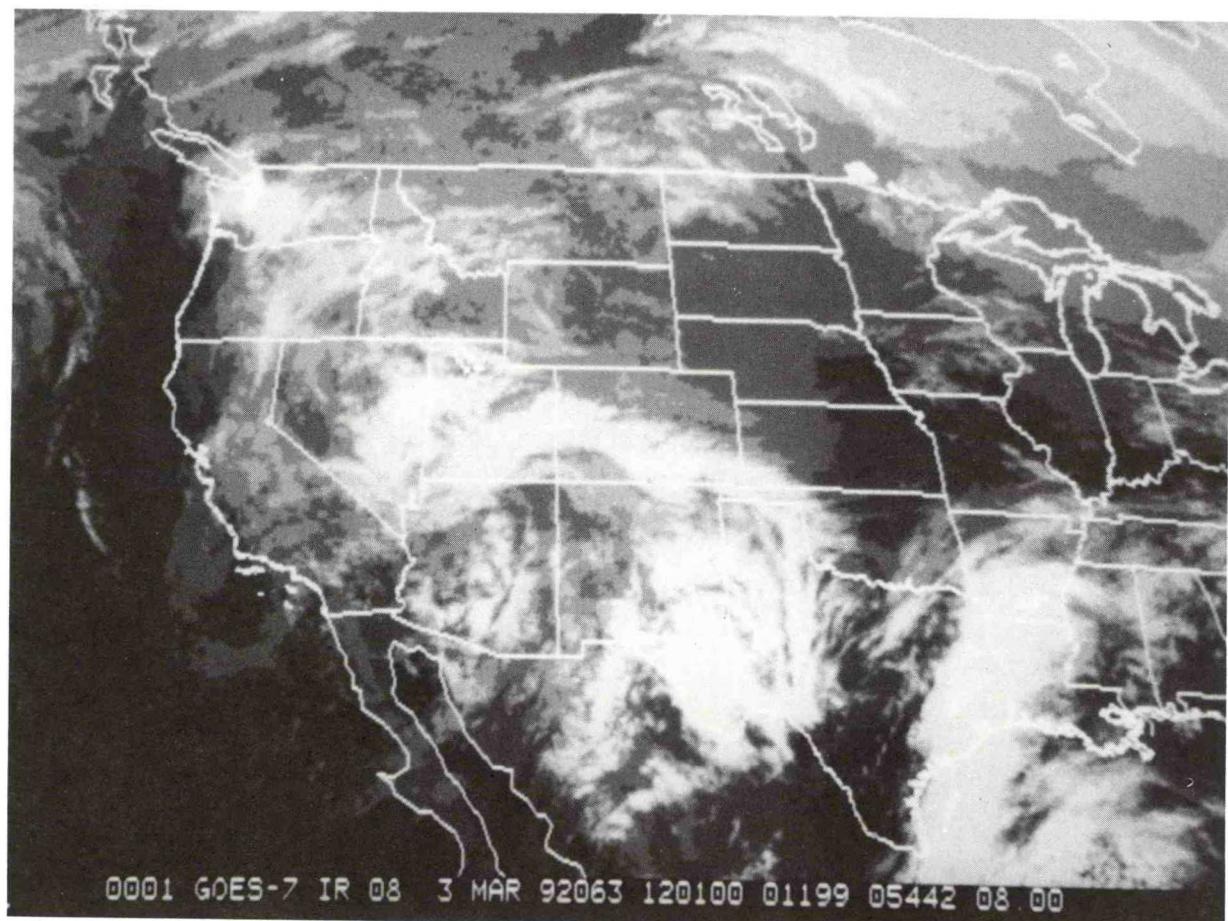
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 38 of 42 stations reported; 2 stations intermittent.    |
|                 | AWOS  | 46 of 47 stations reported; 6 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 7 stations intermittent.    |
|                 | PROFS | 22 of 22 stations reported; 22 stations intermittent.   |
|                 | SAO   | 391 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported.                             |

**NOTES:**


## WEATHER SUMMARY


3 March 1992

The surface low pressure center associated with the West Coast trough was slowly deepening over central Nevada/Utah. The upper-level low now entering Arizona was forecast to move due east over New Mexico in the next 24-h. This placed Oklahoma in diffluent flow with imbedded short waves. One of these short waves was initiating convection ahead of the surface boundary near the New Mexico/Texas border. There was weak upper-level warm advection along with high level cloudiness over Oklahoma and eastern Texas which inhibited convection in that area. The aforementioned short wave trough should begin to change this situation by at least 0000 UTC, 4 March, with thunderstorms expected in southwest Oklahoma. These should spread east during the day tomorrow, 4 March.

Although the NGM seemed to have trouble phasing the PVA and vertical velocities with the trough moving into the west Coast in the next 24- to 36-h, it initialized well with satellite imagery. The NGM forecasted the movement of the surface and upper lows more slowly east than the LFM, and more on a southerly track than the AVN model, which lifted them to the northeast at 36-h. There was a strong jet ( $> 130$  kt @ 300 mb) located at the base of the upper low, in northern Mexico. This argued in favor of the more southerly track forecasted by the NGM. There is very little low-level cold air with this system. However, the cold air should move east with the system into Oklahoma on the afternoon of 4 March, ending most of the precipitation in the western part of the state.

TUESDAY, MARCH 3, 1992





## OPERATIONS SUMMARY

3 March 1992

The following operations were conducted to support IOP 16.

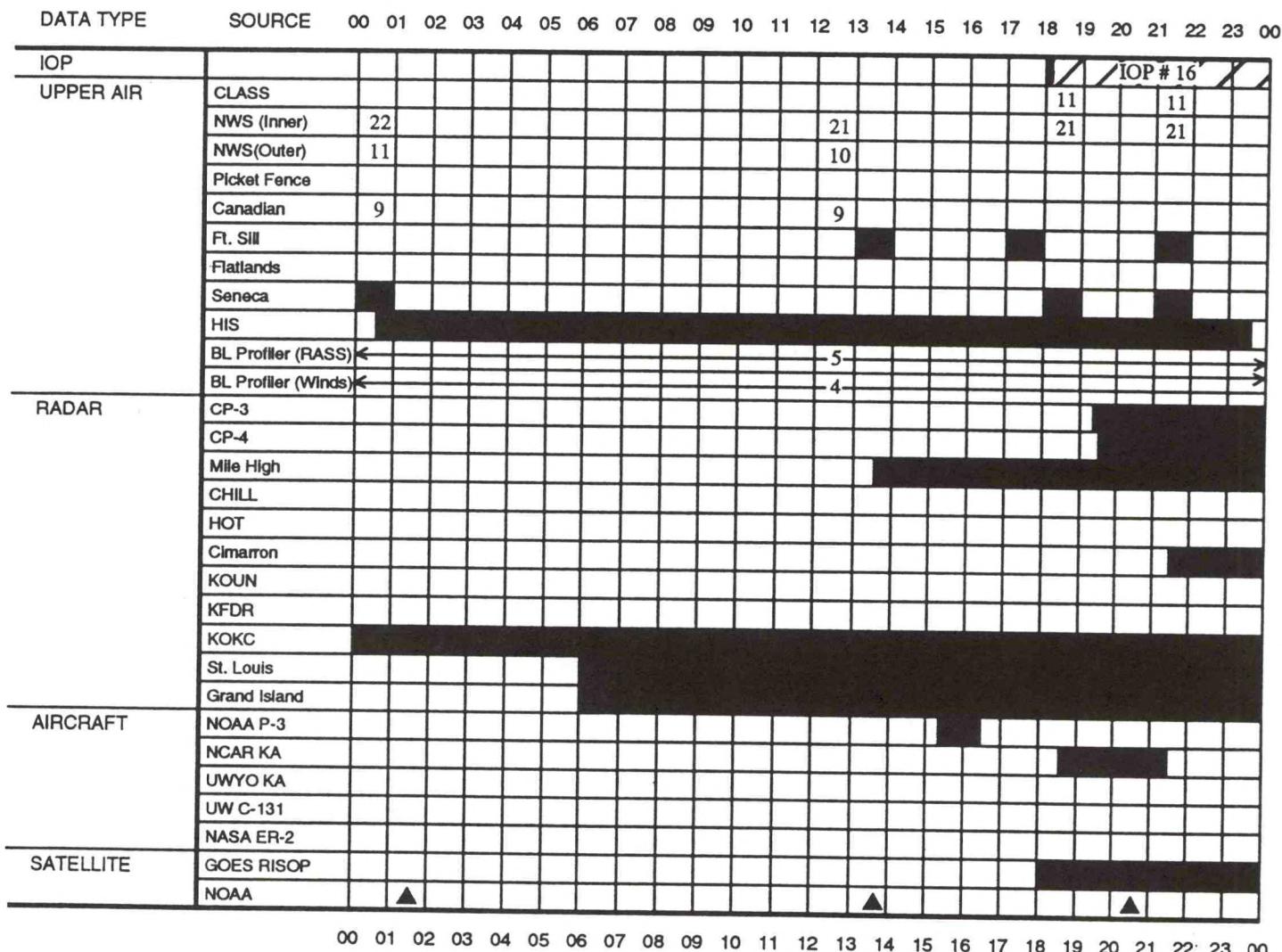
1515 UTC The P-3 conducted a brief dropwindsonde test flight over Richards-Gebaur AFB prior to the start of IOP 16.

1800 UTC IOP 16 began with NWS inner domain soundings and CLASS soundings. The objective of this IOP was to study the formation and evolution of the cyclone in southeast Colorado/southwest Kansas and the fronts and rainbands associated with it.

1800 UTC Along with NWS inner domain and CLASS soundings, GOES-7 RISOP mode began and was scheduled to continue until 0000 UTC, 5 March.

1845 UTC The NCAR King Air took off to sample the environment in southern Kansas and northern Oklahoma in anticipation of thunderstorms developing in that region. Only a few weak showers developed and the mission was terminated at 2119 UTC.

1915 UTC CP-3 Radar became operational.


1930 UTC CP-4 Radar became operational.

2217 UTC NSSL Cimarron radar became operational.

## STORM-FEST HOURLY COLLECTION OF DATA

Date: 3 March  
 Julian Day: 63

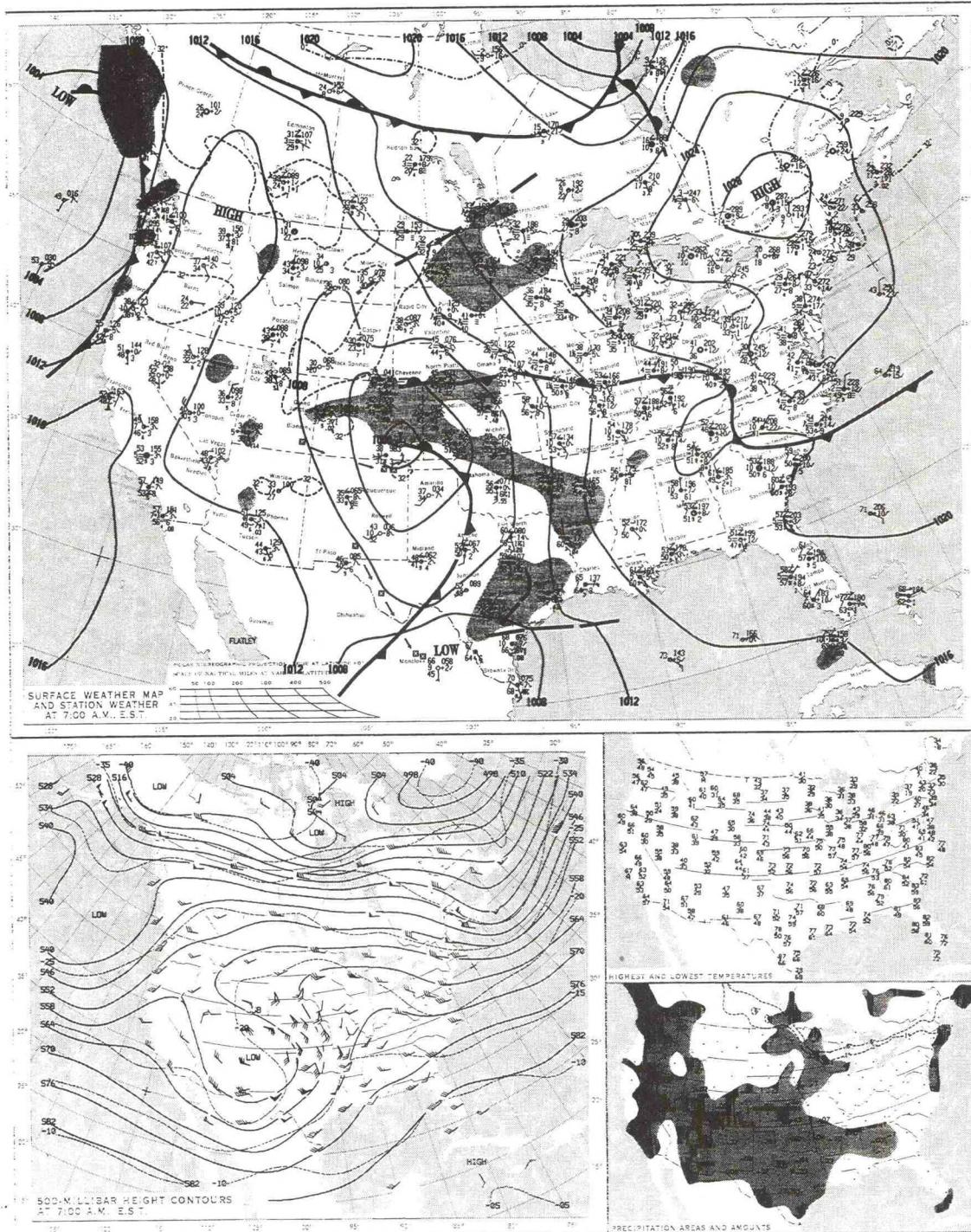
Time (UTC)

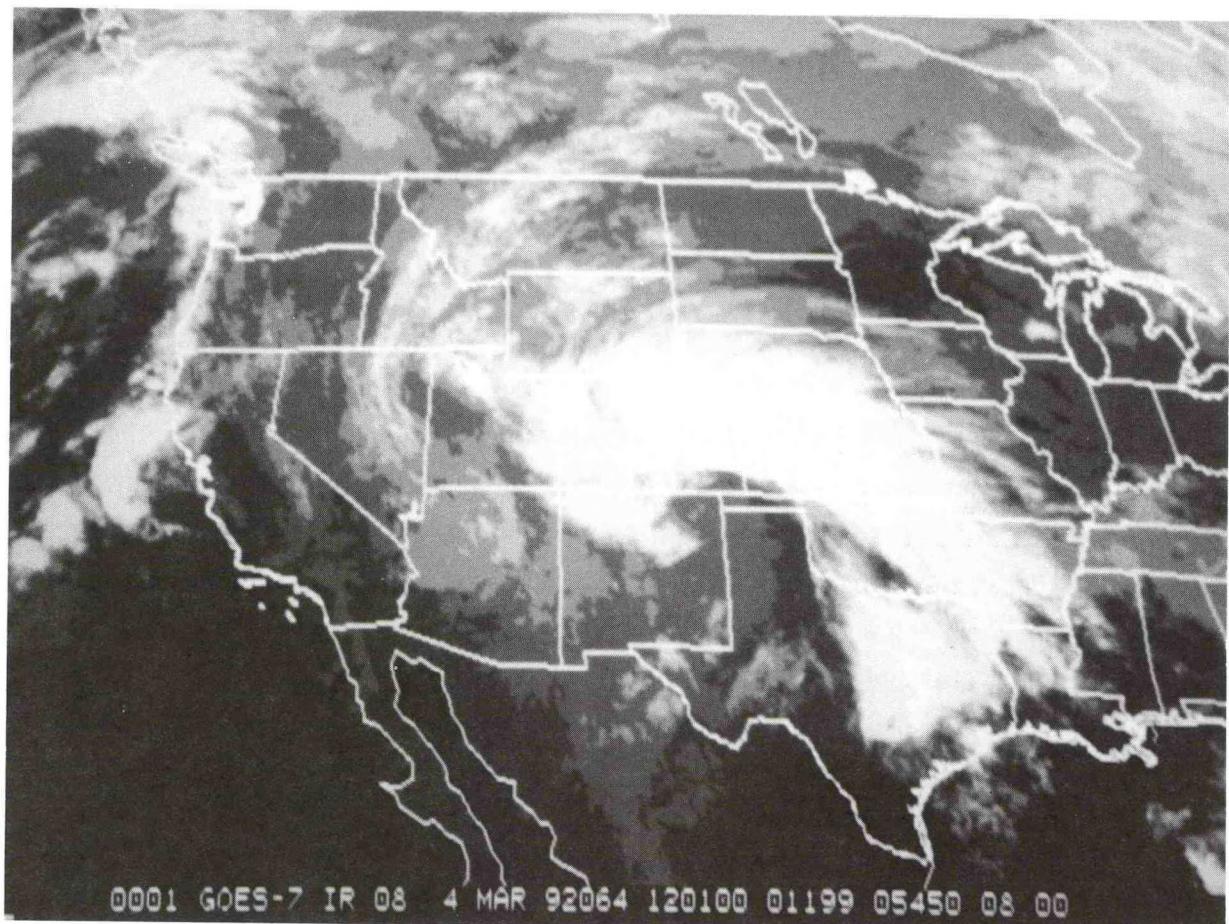


### Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 38 of 42 stations reported; 3 stations intermittent.    |
|                 | AWOS  | 47 of 47 stations reported; 4 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 9 stations intermittent.    |
|                 | PROFS | 22 of 22 stations reported.                             |
|                 | SAO   | 394 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported; 12 stations intermittent.   |

**NOTES:**


**WEATHER SUMMARY****4 March 1992**


At 1200 UTC, the surface low had moved over the southern Colorado/Kansas area with a weak cold front extending down over western Oklahoma and central Texas. A major precipitation band extended from the surface low southeastward down through northern Oklahoma and central Arkansas. A weak stationary front was still evident in the surface analyses extending east-west from southern Nebraska to southern Indiana.

An upper-level cold low was centered over northwest New Mexico and was slowly drifting east, giving potential for destabilizing the atmosphere over Oklahoma during the afternoon. There were indications of a short wave trough (SWT) located at the base of the upper low (now over El Paso), which could trigger convection over Oklahoma. The difficult question was the timing of a dryline/cold front now entering the extreme southwest corner of Oklahoma.

Surface heating (skies were partly cloudy over southwest Oklahoma) ahead of the dryline, combined with the SWT, should fire convection first over central Oklahoma, and then over the eastern half of Oklahoma, from this evening through 1200 UTC, 5 March. The NGM forecasted strong upward motion and rain amounts over 1.5 inches over eastern Oklahoma from 0000-1200 UTC, 5 March. Since this model depicted the SWT mentioned above, and produced the precipitation on 3 March (now over southern Kansas), this seemed a likely scenario.

WEDNESDAY, MARCH 4, 1992





**OPERATIONS SUMMARY****4 March 1992**

IOP 16 continued with soundings, radar operations, GOES-7 RISOP, and flights of the C-131, NOAA P-3, Wyoming King Air and NCAR King Air to sample the environment around the low pressure center and developing precipitation band associated with the low. The following operations were conducted today to support this IOP.

0012 UTC      The University of Washington C-131 took off to sample the deepening surface low pressure area centered over eastern Colorado/western Kansas. The C-131 flew at 12 kft. from Kansas City to the low centered over western Kansas. It then flew at approximately 8 kft. to the Oklahoma panhandle and then flew eastward to sample the larger scale environment. On return to Kansas City, thunderstorms developed in central and eastern Kansas. The aircraft landed at 0554 UTC. This flight should provide information on the developing low and conditions in Kansas prior to and during initial stages of precipitation.

1505 UTC      The NOAA P-3 took off to document the precipitation band in what some scientists called a "barotropic" cyclone, anticipating that there would be dry southerly flow south of the band, moist easterly flow in the band, and a warm moist tongue and a steep cloud edge along the south edge of the band. Neither the thermal signature nor the steep cloud edge was seen. There was a very distinctive wind signature with a sharp wind shift and a strong easterly jet just north of the dry southerly flow. There was also a displacement of about 100 km north of the precipitation band from the cloud edge.

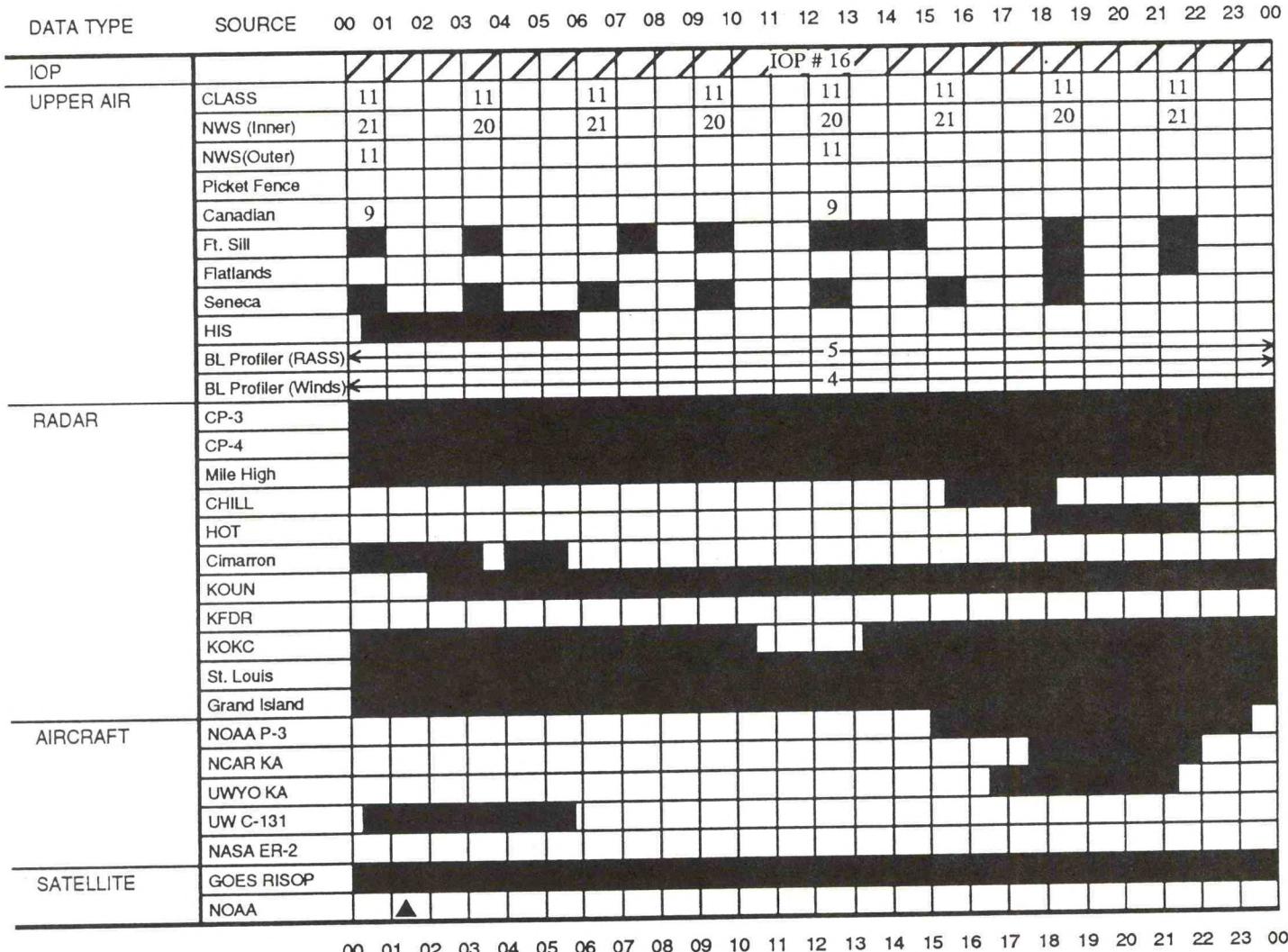
After takeoff, the P-3 did a dropwindsonde run from Richards-Gebaur AFB to the southeast, followed by a short vertical stack near Wichita. The P-3 then flew northward into Nebraska and did a "sawtooth" pattern into the more active area of the cloud band near the Nebraska corner of Colorado. The return leg, also flown in the cloud band, was a "sawtooth" pattern back to Richards-Gebaur AFB. Much of this flight was conducted at 11 kft. MSL at a temperature of about -3°C. The result was excellent documentation of along band variability of cross band structure. As stated above, the south edge of the wrap around moisture was clearly identified in the wind field, but absent in the thermal field. Clearly a boundary existed

between southerly dry and easterly moist flow, but it was not a front in the thermal field. (Had this been a baroclinic cyclone, the thermal front would have been there.) The aircraft landed at 2306 UTC.

1625 UTC The University of Wyoming King Air took off to conduct an "M" surface flight pattern in the rainband near Emporia, Kansas. After a moderately successful flight, the aircraft did an along band stack in a rainband that had moved into the dual-Doppler area. Stacks were flown at 12k, 11k, 9k and 10 kft. The aircraft encountered some turbulence and updrafts of  $4-5 \text{ ms}^{-1}$ . The aircraft landed at 2114 UTC.

1734 UTC The NCAR King Air took off to sample the main rainband located in south central Nebraska. The aircraft flew across the rainband at 12k, 9k and 6 kft. Two dropwindsonde soundings were taken near the center of the band prior to the aircraft heading back to Richards-Gebaur AFB. The aircraft landed at 2155 UTC.

CP-3 and CP-4 Radar operated all day sampling the various precipitation bands that moved through the dual-Doppler array.


The Oklahoma radars (KOUN, Cimarron, and KOKC) sampled convective activity which formed ahead of the front that moved across the Little Washita Basin during the evening. This was followed by a narrow squall line associated with the front. Precipitation ended over the Little Washita Basin by 0800 UTC, 04 March, with total precipitation accumulations ranging from 0.5 to 1.6 inches.

## STORM-FEST HOURLY COLLECTION OF DATA

Date: 4 March

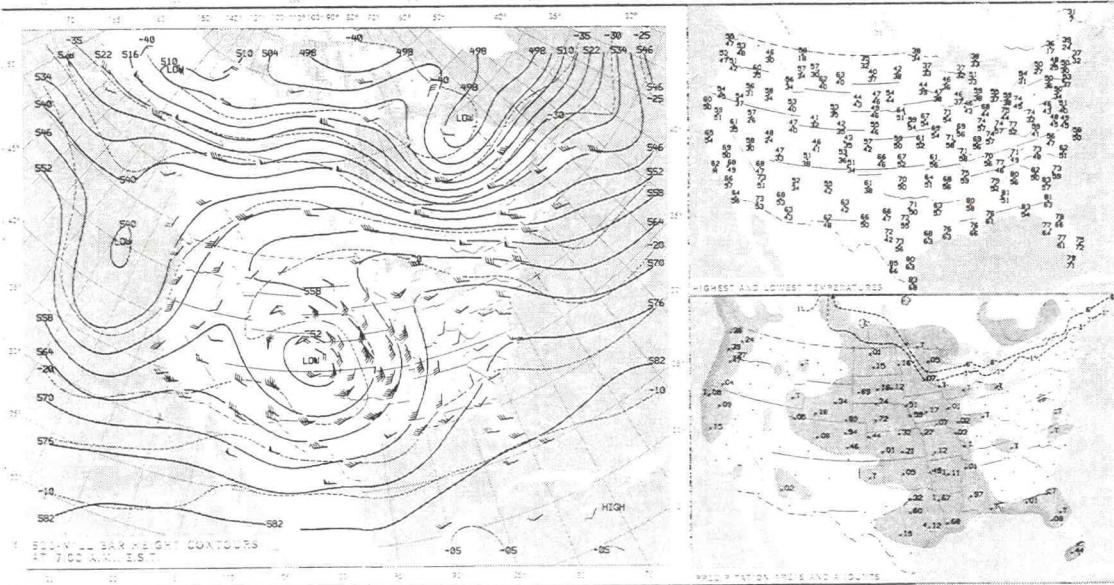
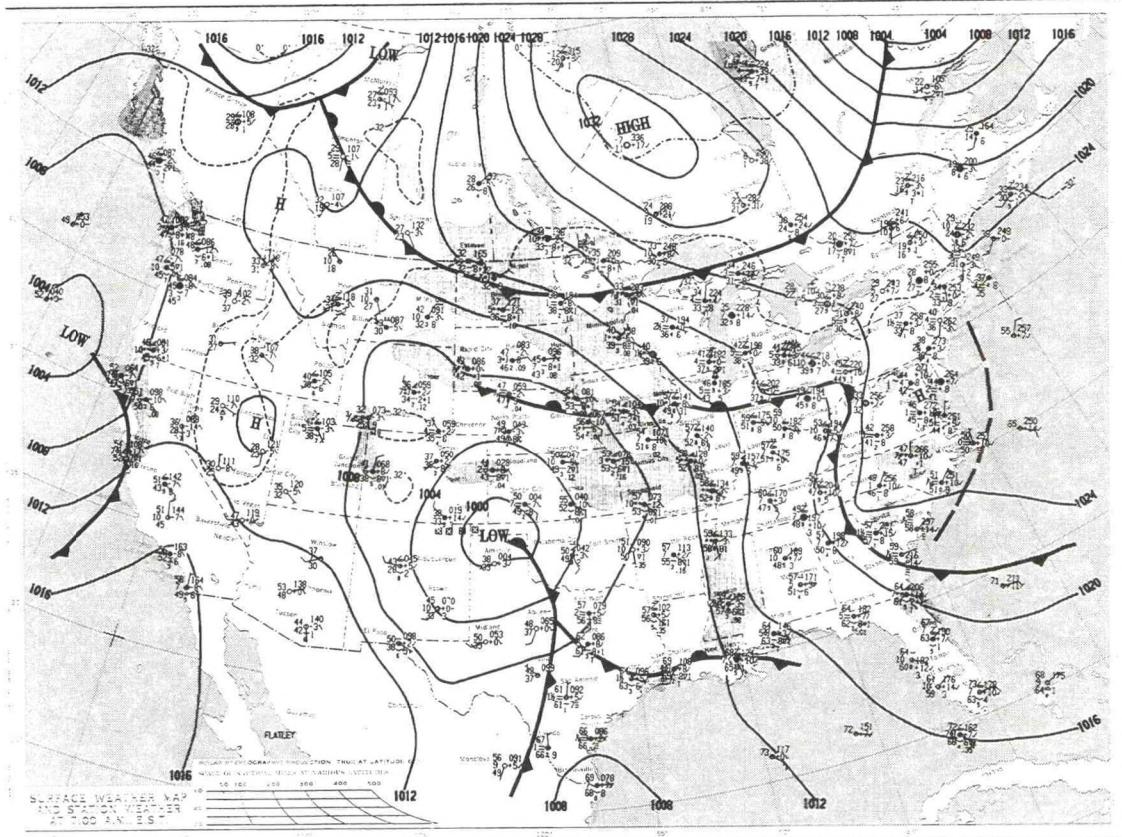
Julian Day: 64

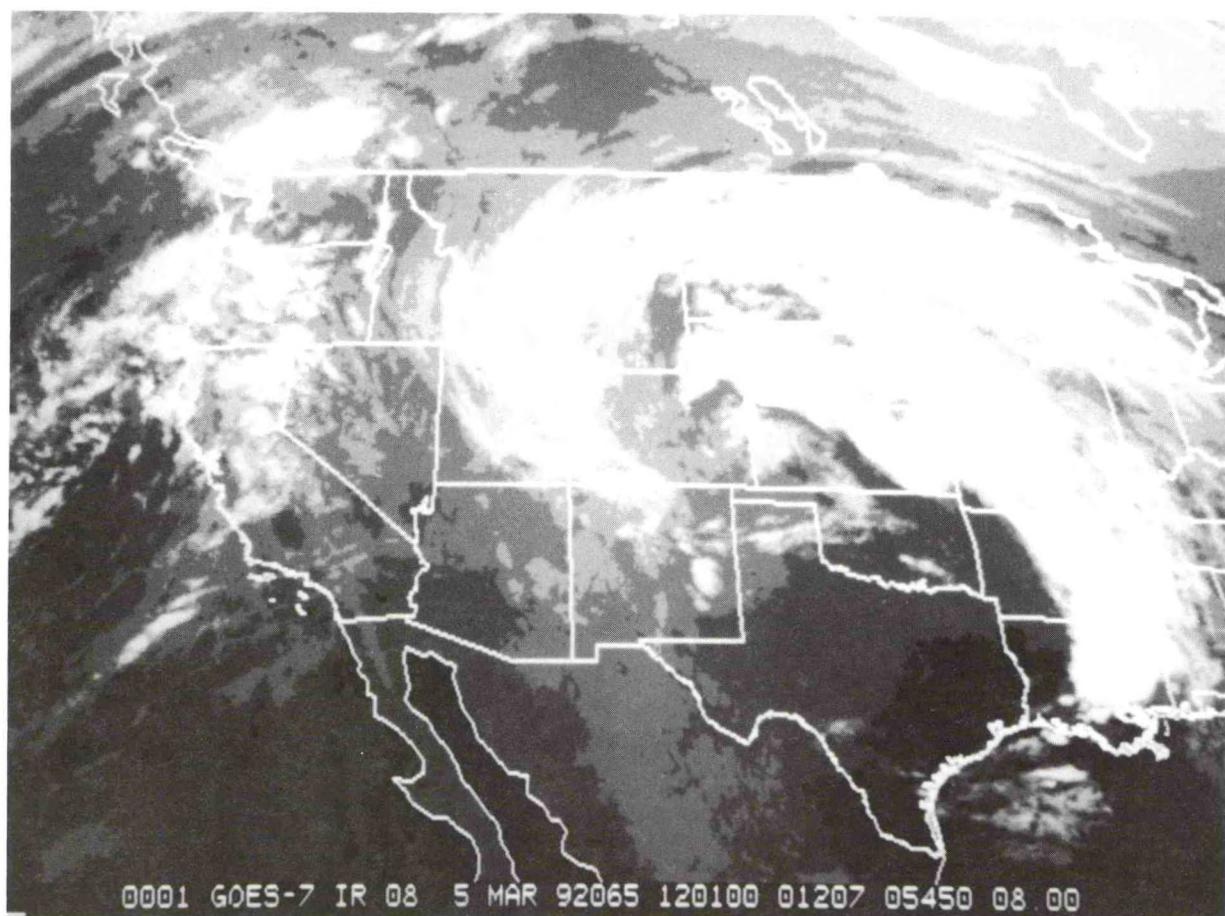
Time (UTC)



Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 38 of 42 stations reported; 3 stations intermittent.    |
|                 | AWOS  | 47 of 47 stations reported; 5 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 10 stations intermittent.   |
|                 | PROFS | 22 of 22 stations reported; 1 station intermittent.     |
|                 | SAO   | 394 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 13 of 13 stations reported; 13 stations intermittent.   |



**WEATHER SUMMARY****5 March 1992**


At 1200 UTC, the surface low pressure area was located over the Texas panhandle/Kansas border, with a weak stationary front located over Nebraska, Iowa and Illinois. The 500 mb closed low had continued to move very slowly eastward and at this time was located over the surface low. The model progs indicated that the upper low would open up and begin to swing out to the east-northeast. The forecast called for gradual clearing to occur from west to east across the high plains, with lingering showers in Nebraska and possible development of thunderstorms in western Kansas.

The longer range model progs indicated that over the next 24- to 48-h conditions should be drying out under the influence of a weak shortwave ridge ahead of the next major trough. The surface pressure gradient should weaken considerably, with a very broad weak trough extending across most of the central U.S.

Forecasters were beginning to discuss the likelihood of a major cyclonic system moving into the STORM-FEST domain on 8-9 March in relation to the next major wave moving into the west coast. This could be the focus of the next IOP.

THURSDAY, MARCH 5, 1992





**OPERATIONS SUMMARY****5 March 1992**

IOP 16 ended today with the last of the NWS and CLASS soundings being taken in the inner domain at 1200 UTC. There was one aircraft flight earlier in the day in support of IOP 16.

0151 UTC During the late evening another precipitation band appeared in southeast Kansas. The University of Washington C-131 took off to obtain detailed measurements in the well organized cloud band as it moved into the dual-Doppler area. [The main "spiral" precipitation band that was studied in earlier flights had moved north into Nebraska.] The aircraft flew a sawtooth flight pattern from 15k to 3 kft. The precipitation encountered was virtually all light and stratiform in nature with little liquid water or rimmed crystals. This appeared to be another case of low stratocumulus topped by miniature convective cells driven by the disturbance aloft. The aircraft scientists reported that crystal types varied from "warm" habits (columnar) to "cold" (stellars and dendritic forms).

The principal feature of interest in this IOP was a cloud band (tops generally below 600-500 mb) that extended in an arc from Kansas to Colorado and then southward in conjunction with weak surface cyclogenesis ( $\sim 1000$  mb) over southeastern Colorado. This cyclogenesis occurred in conjunction with a slow-moving diffluent trough in the southern branch of the westerlies over northern Mexico and southern Texas. A noteworthy feature was the absence of deep baroclinicity in the large-scale flow.

The principal cloud band was sampled by the P-3 on 4-5 March. Noteworthy features included a broad area of isothermal conditions ( $\sim 0^\circ$  C) at 700 mb and a confluent asymptote ( $20-40^\circ$ ) along the band. At mid-levels ( $\sim 500$  mb) the cloud band environment was characterized by a  $\sim +2^\circ$  C temperature anomaly on the north side of the band in an otherwise weak baroclinic environment.

This case is a good example of the evolution of an expanding comma-shaped cloud pattern associated with a very slow moving and developing cutoff cyclone. Cyclogenesis was very modest. Unstable air on the south and east side of the vortex was associated with precipitation bands with embedded convective activity. There was a major convective outbreak in southeastern Texas that led to major flooding, severe storms, tornadoes in Texas and Oklahoma.

### Other Activities:

With the likelihood of a major winter storm developing in the STORM-FEST area on 8-9 March IOP 17 started today with the start-up of West Coast "Picket Fence" soundings at 1200 UTC. These were expected to continue for the next 48-h. Outer domain NWS soundings were scheduled to start at 0000 UTC (6 March). The focus of this IOP was to study the frontal structure, evolution of precipitation, and boundary-layer processes in a major mid-latitude cyclonic event that was expected to enter the STORM-FEST domain on or about 9 March.

With the ending of IOP 16 and the expected activity in the STORM-FEST domain in 3-4 days, tomorrow, 6 March, was declared a hard down-day to rest the air crews, radar crews and CLASS crews. (No rest for the Operation Crews.)

**STORM-FEST**  
**HOURLY COLLECTION OF DATA**

Date: 5 March  
Julian Day: 65

Time (UTC)

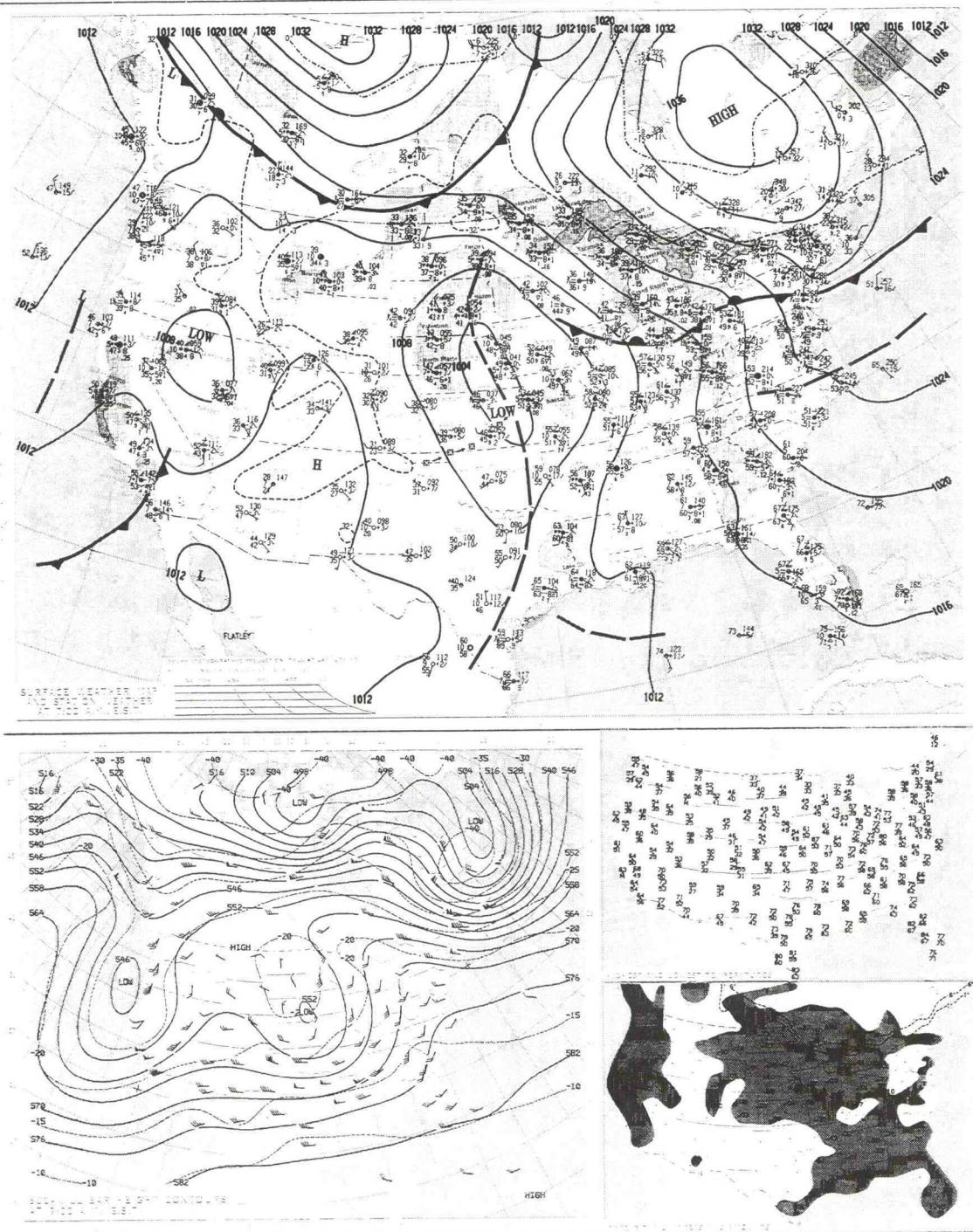
| DATA TYPE | SOURCE                | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| IOP       |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| UPPER AIR | CLASS                 | 11 |    | 11 |    | 11 |    | 9  |    |    |    | 11 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NWS (Inner)           | 21 |    | 21 |    | 21 |    | 21 |    |    |    | 20 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NWS(Outer)            | 11 |    |    |    |    |    |    |    |    |    | 11 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Picket Fence          |    |    |    |    |    |    |    |    |    | 1  | 7  |    |    | 9  |    | 9  |    |    |    |    |    |    |    | 8  |    |
|           | Canadian              | 9  |    |    |    |    |    |    |    |    |    | 9  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Ft. Sill              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Flatlands             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Seneca                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | HIS                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 5  |    |    |    |    |    |    |    |
|           | BL Profiler (RASS) <  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 4  |    |    |    |    |    |    |    |
|           | BL Profiler (Winds) < |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| RADAR     | CP-3                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CP-4                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Mile High             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CHILL                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | HOT                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Cimarron              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KOUN                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KFDR                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KOKC                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | St. Louis             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Grand Island          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| AIRCRAFT  | NOAA P-3              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NCAR KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | UWYO KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | UW C-131              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NASA ER-2             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| SATELLITE | GOES RISOP            |    | ■  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | ▲  |    |    |    |    |    |    |    |
|           | NOAA                  |    | ▲  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

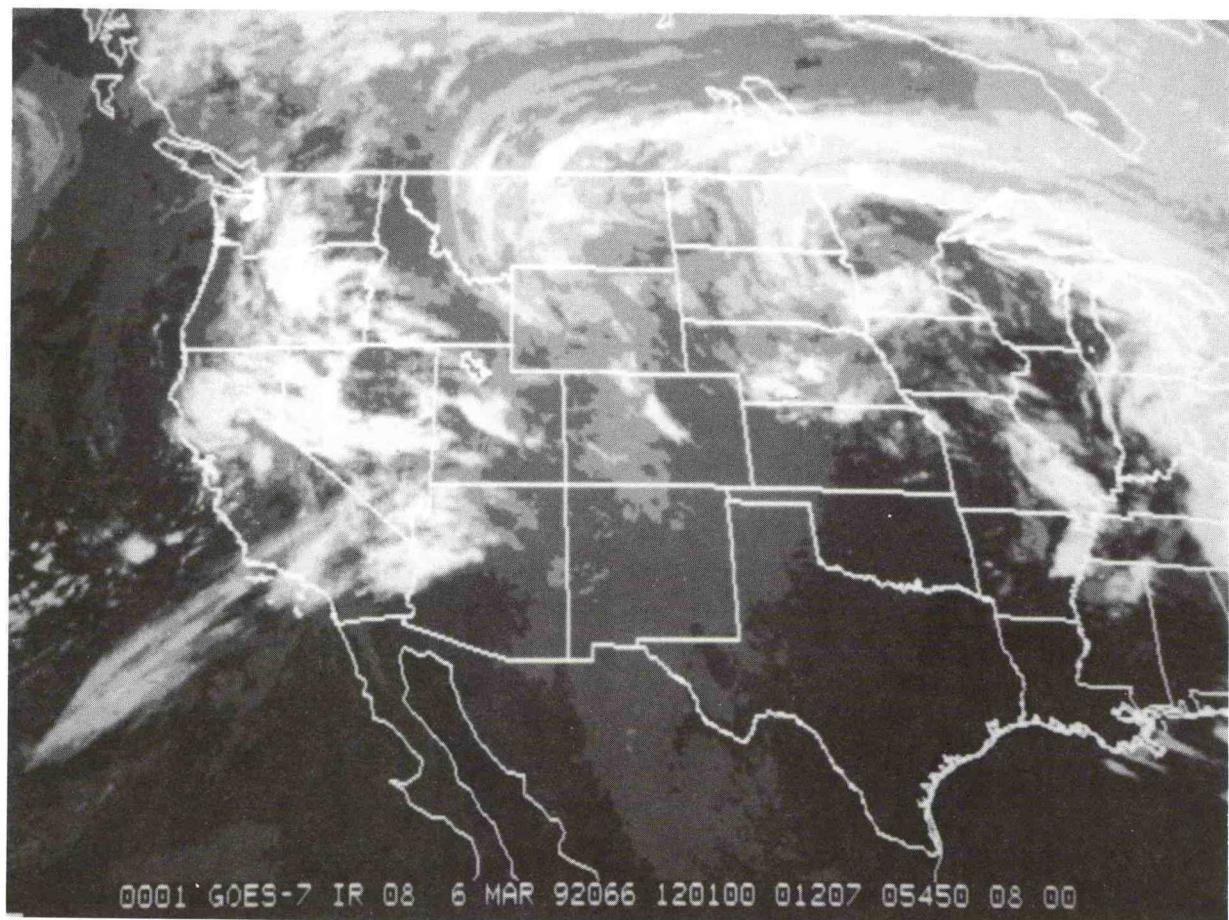
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 38 of 42 stations reported; 1 station intermittent.     |
|                 | AWOS  | 46 of 47 stations reported; 5 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 7 stations intermittent.    |
|                 | PROFS | 22 of 22 stations reported; 3 stations intermittent.    |
|                 | SAO   | 391 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 13 of 13 stations reported; 13 stations intermittent.   |

**WEATHER SUMMARY****6 March 1992**


The upper-level low pressure area that had affected the STORM-FEST domain for the past several days continued to drift slowly northeast, with light rain over eastern Nebraska, Iowa and Missouri. Precipitation should end in Nebraska before 0000 UTC tomorrow, 7 March. The MM4 model indicated the possibility of moderate to heavy precipitation moving from northern Missouri into Illinois, extending south into Kentucky by 0600 UTC, 7 March. The possibility of convection existed in southern Illinois and western Kentucky.


As one of the Norman, OK forecasters said, "the forecast emphasis is on the next several days when a powerhouse system is expected to wind up over the central U.S. This system will likely provide the whole spectrum of weather events for the STORM-FEST domain, as Gulf moisture rapidly returns and arctic air enters the fray by early next week [9-10 March]."

Models hinted that a shortwave swinging northeast ahead of main system across Texas and Oklahoma Saturday night (~0000 UTC, 8 March) would add lift and possible shower development, but timing was highly uncertain this far out. An upper-level jet axis was also forecast to develop from New Mexico, northeast to Nebraska, resulting in an increasingly diffluent pattern over Oklahoma and Texas. A surface low pressure area should begin to spin up over southeast Colorado during this time, in response to increasing flow aloft and approach of the main upper level system. The NGM suggested that a warm front would develop eastward across Kansas on Saturday night (7 March), with warm advection north of this boundary. More widespread precipitation was expected further west over the Rocky Mountains, with the upper-level system, at least through Sunday morning (1200 UTC, 8 March).

On Sunday, 8 March, everything should begin coming together as the cold front/dry-line moves east across Oklahoma and Texas, and arctic air moves south into the northern Plains/Rocky Mountains. Western Oklahoma may again be shut off from precipitation by midday Sunday, with strong thunderstorms developing further east over eastern Oklahoma Sunday afternoon, 8 March. A deep surface low was expected to move east-northeast through the STORM-FEST domain Monday, 9 March, with arctic air surging south through the Plains behind it. The potential was very high for a major winter storm over central/northern Plains and upper midwest with this system.

FRIDAY, MARCH 6, 1992





## OPERATIONS SUMMARY

6 March 1992

IOP 17 continued throughout the day.

The "Picket Fence" sounding network continued 3-h soundings and the NWS outer domain sounding sites began taking 6-hourly soundings starting at 0000 UTC, as the deep upper level trough off California continued to move eastward.

### Other Activities:

As this system moved eastward, soundings from the Canadian sounding sites were placed on alert to begin taking supplemental soundings at 0000 UTC, 7 March, to monitor the northern jet and associated push of cold arctic air southward out of Canada into the U.S.

Otherwise, today was a hard down day for all operations in the STORM-FEST program. (Getting ready for the big one).

## STORM-FEST HOURLY COLLECTION OF DATA

Date: 6 March  
 Julian Day: 66

Time (UTC)

| DATA TYPE | SOURCE              | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14       | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|---------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----------|----|----|----|----|----|----|----|----|----|----|
| IOP       |                     | /  | /  | /  | /  | /  | /  | /  | /  | /  | /  | /  | /  | /  | /  | IOP # 17 | /  | /  | /  | /  | /  | /  | /  | /  | /  |    |
| UPPER AIR | CLASS               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
|           | NWS (Inner)         | 21 |    |    |    |    |    |    |    |    | 1  |    |    | 22 |    |          |    |    |    |    |    |    |    |    |    |    |
|           | NWS(Outer)          | 11 |    |    |    |    |    |    |    | 11 |    |    |    | 11 |    |          |    |    |    |    |    |    |    |    |    | 11 |
|           | Picket Fence        | 8  |    | 9  |    | 9  |    | 9  |    |    |    |    | 9  |    |    | 9        |    |    |    |    | 9  |    |    | 9  |    | 9  |
|           | Canadian            | 9  |    |    |    |    |    |    |    |    |    |    |    | 9  |    |          |    |    |    |    |    |    |    |    |    |    |
|           | Fl. SIII            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
|           | Flatlands           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
|           | Seneca              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
|           | HIS                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
|           | BL Profiler (RASS)  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          | 5  |    |    |    |    |    |    |    |    |    |
|           | BL Profiler (Winds) |    | 4  | ←  |    |    |    |    |    |    |    |    |    |    |    |          | 5  | →  |    |    |    |    |    |    |    |    |
| RADAR     | CP-3                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
|           | CP-4                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
|           | Mile High           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
|           | CHILL               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
|           | HOT                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
|           | Cimarron            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
|           | KOUN                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
|           | KFDR                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
|           | KOKC                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
|           | St. Louis           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
|           | Grand Island        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
| AIRCRAFT  | NOAA P-3            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
|           | NCAR KA             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
|           | UWYO KA             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
|           | UW C-131            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
|           | NASA ER-2           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
| SATELLITE | GOES RISOP          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |
|           | NOAA                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |

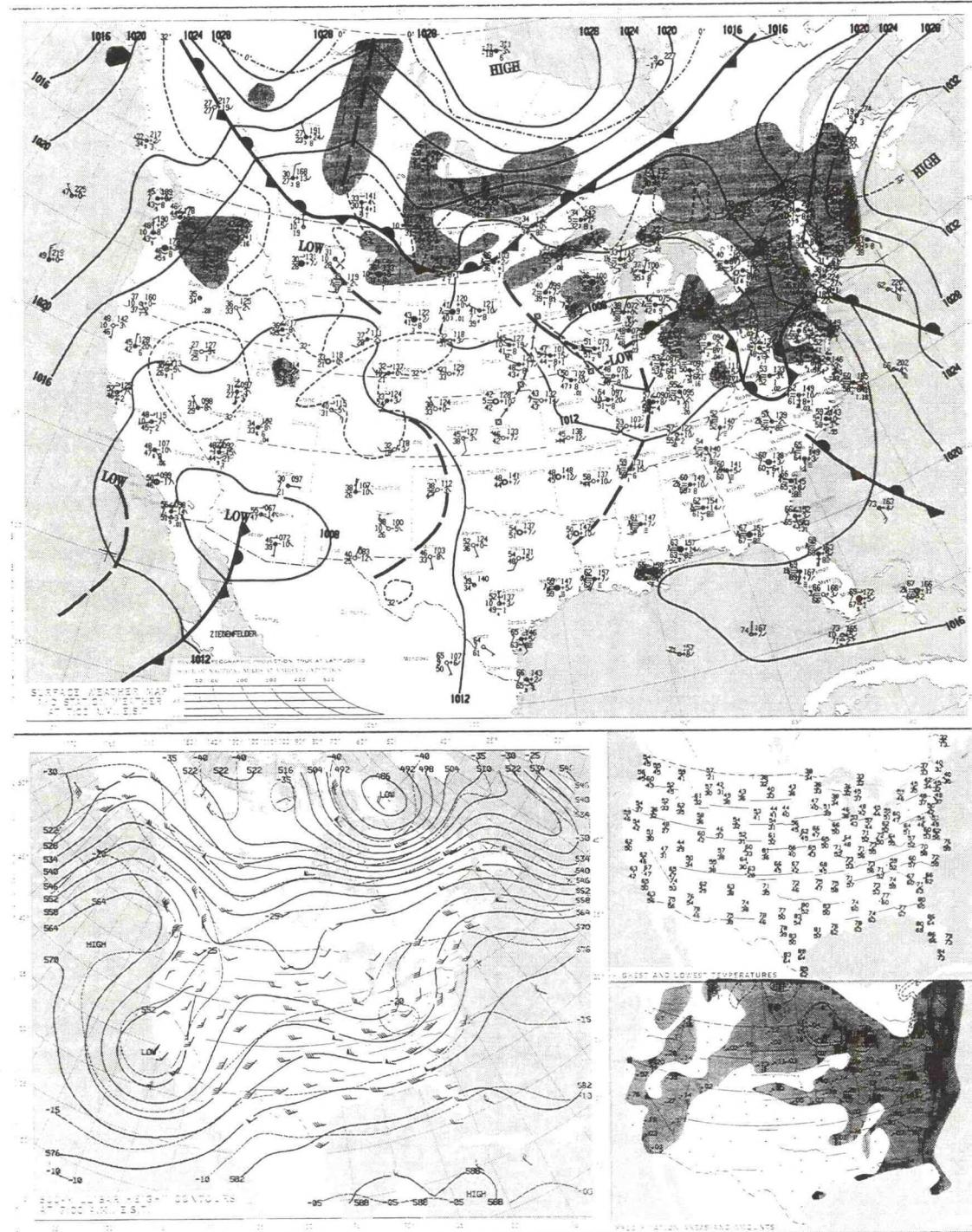
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

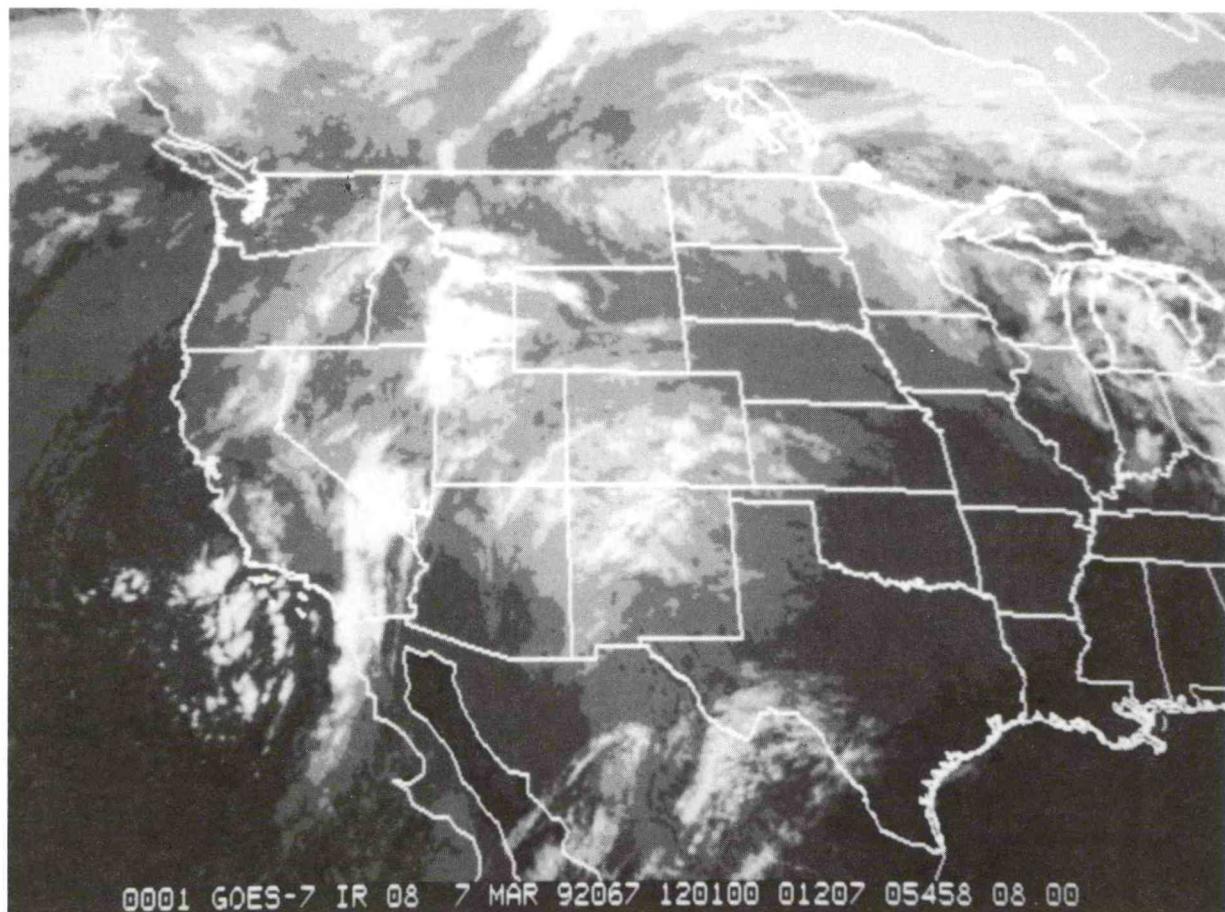
Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 39 of 42 stations reported; 1 station intermittent.     |
|                 | AWOS  | 47 of 47 stations reported; 5 stations intermittent.    |
|                 | HPCN  | 72 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 34 of 35 stations reported; 15 stations intermittent.   |
|                 | PROFS | 22 of 22 stations reported; 22 stations intermittent.   |
|                 | SAO   | 396 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported.                             |

**NOTES:**

**WEATHER SUMMARY****7 March 1992**


At 1200 UTC the upper-level trough had moved onto the west coast, with a weak surface low analyzed over southern Arizona. Mostly fair skies were forecasted over the STORM-FEST domain as the weak surface low and associated precipitation that was the focus of IOP 16 continued to move to the east.


The models indicated that an arctic front should be pushing through Wyoming and Nebraska by 1200 UTC, 8 March, with precipitation breaking out behind it; upslope snows in Wyoming could be intense. Some prefrontal showers were indicated by the MM-4 model in Kansas and Missouri area, but only light amounts of precipitation were expected.

By 1800 UTC, 8 March, thunderstorms were likely to redevelop along the cold front/dry line over western Oklahoma and perhaps as far west as the east Texas panhandle, developing eastward across Oklahoma during Sunday evening, 0000 UTC, 9 March. Return of Gulf moisture should be more rapid than indicated by the models, resulting in greater destabilization. SELS indicated that the Eta model forecasted a -10 lifted index over southern Oklahoma and northern Texas by Sunday evening, 8 March, whereas the NGM has a -4 lifted index. Increasing diffluence between upper jet axes, increase of the low-level jet to over 40 knots, and increasingly favorable directional shear all pointed to a high potential for tornadoes across Oklahoma and Texas, if moisture can return fast enough. Western Oklahoma would likely dry out Sunday afternoon, 8 March, before the cold front drives south into Oklahoma on 9 March. With the upper level system lifting east northeast, forecasters expected only minimal chances of wraparound precipitation being pulled south into Oklahoma on 9 March.

The model progs indicated that by 0000 UTC, 9 March, the front should be pushing well into the STORM-FEST domain. At that time, it was expected that upslope conditions would exist through Wyoming, and just beginning along the foothills of Colorado. The postfrontal precipitation in the high plains should begin as rain, turning to sleet and snow as the colder air moves in behind the front. By 48-h, 1200 UTC, 9 March, the Eta model indicated a major snowstorm in the Nebraska panhandle, near the Colorado/Kansas border. Snow should be covering a major portion of the northern STORM-FEST domain; from Wyoming, Nebraska, Colorado and northwest Kansas. Another area of precipitation would be in Missouri/Iowa in response to warm frontal overrunning, with an area of possibly severe weather in eastern Oklahoma and northeast Texas as discussed above. This was a potent system, with surface and upper level forcing coming together over the high plains to create a major winter storm.

SATURDAY, MARCH 7, 1992





## OPERATIONS SUMMARY

7 March 1992

IOP 17 continued throughout the day.

0000 UTC      Canadian soundings array began to take 6-hourly soundings. These were scheduled to continue for the next 48-h.

### Other Activities:

The principle objectives of this IOP were to study frontal structures, evolution of precipitation and boundary layer processes in this major cyclonic event. Primary mission planning team activities today focused on the timing of the inner domain soundings and the proposed aircraft flights and radar operations.

The Wyoming King Air was scheduled to depart for Oklahoma City at 0000 UTC tomorrow, 8 March, in order to study both the upper level and lower level jet maxima in the warm air ahead of the eastward moving polar front and the southward moving arctic front. Timing of this flight was proposed to be between 1600 UTC and 1800 UTC, 8 March.

The HOT radar concluded measurements at 0730 UTC of precipitation from the low pressure system which tracked across Illinois (part of IOP 16).

## STORM-FEST HOURLY COLLECTION OF DATA

Date: 7 March  
Julian Day: 67

Time (UTC)

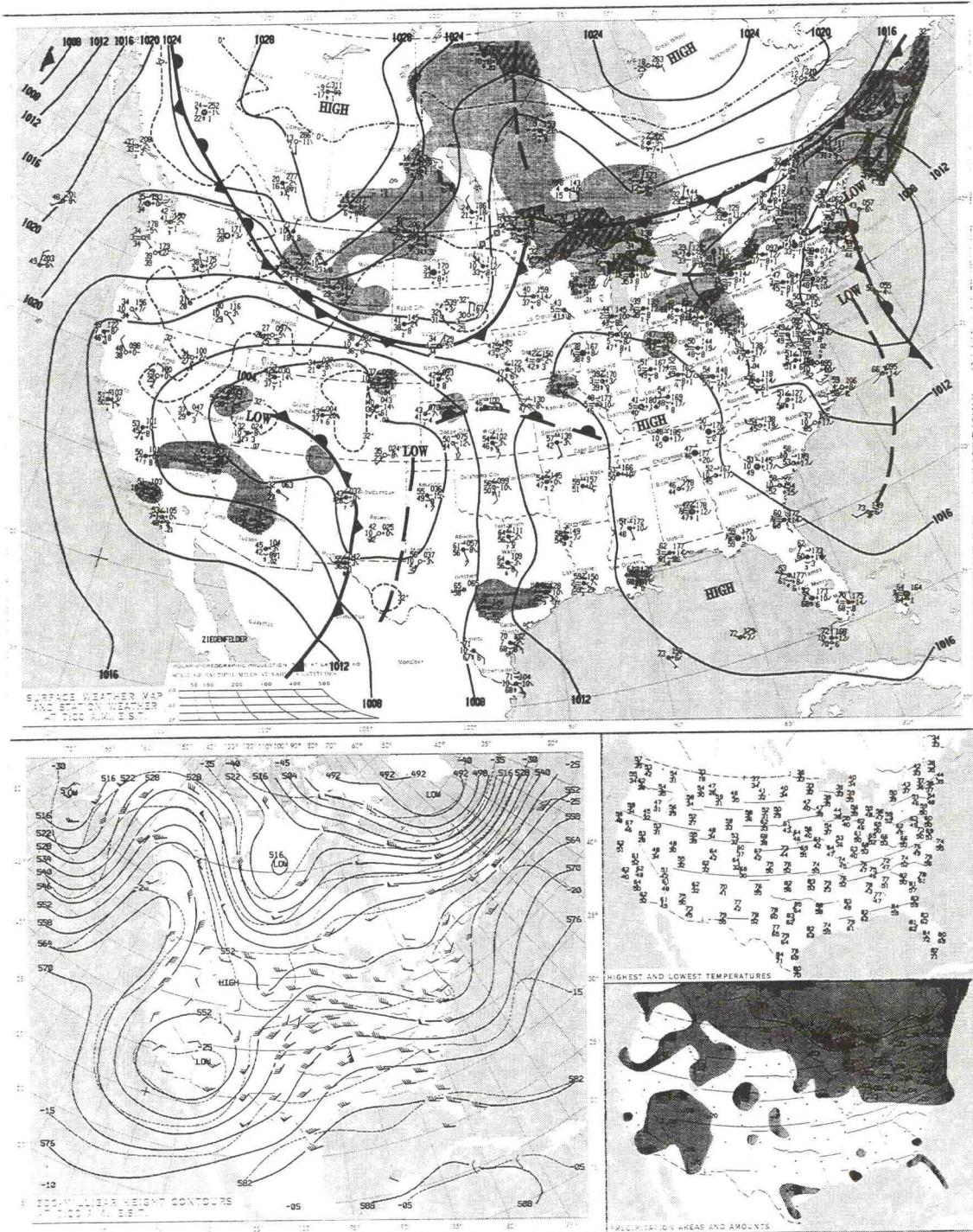
| DATA TYPE | SOURCE                | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| IOP       |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| UPPER AIR | CLASS                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NWS (Inner)           | 22 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NWS(Outer)            | 11 |    |    |    |    |    |    | 11 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 11 |
|           | Picket Fence          | 9  |    | 9  |    | 9  |    |    |    | 9  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 7  |
|           | Canadian              | 9  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 9  |
|           | Ft. Sill              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Flatlands             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Seneca                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | HIS                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | BL Profiler (RASS) ←  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 5  |    |    |    |    |    |    |    |
|           | BL Profiler (Winds) ← |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 5  |    |    |    |    |    |    |    |
| RADAR     | CP-3                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CP-4                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Mile High             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CHILL                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | HOT                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Cimarron              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KOUN                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KFDR                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KOKC                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | St. Louis             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Grand Island          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| AIRCRAFT  | NOAA P-3              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NCAR KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | UWYO KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | UW C-131              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NASA ER-2             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| SATELLITE | GOES RISOP            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NOAA                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           |                       | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |

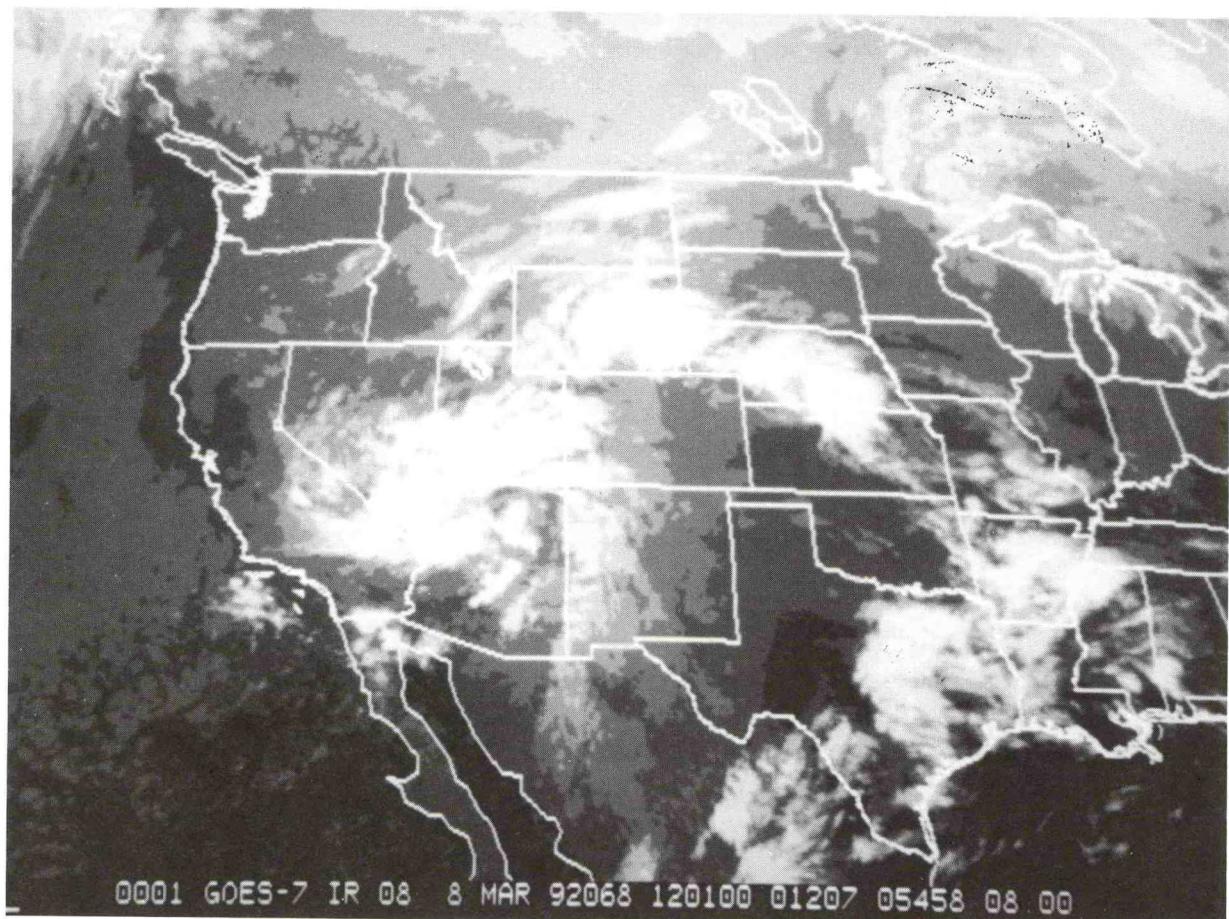
Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 38 of 42 stations reported; 1 station intermittent.     |
|                 | AWOS  | 45 of 47 stations reported; 1 station intermittent.     |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 11 stations intermittent.   |
|                 | PROFS | 22 of 22 stations reported; 3 stations intermittent.    |
|                 | SAO   | 389 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported.                             |

**NOTES:**

**WEATHER SUMMARY****8 March 1992**


An upper level trough and cutoff low moved into the STORM-FEST domain coincident with the low level intrusion of arctic air. A convective outbreak was expected this afternoon in the Texas/Oklahoma area as a front/dryline associated with a surface low in southeastern Colorado pushed eastward into Texas and Oklahoma. Good moist southerly flow continued in Texas, Oklahoma, and Kansas. A 100 kt jet moving around the cutoff low was expected to move over southeast Texas, putting the Texas/Oklahoma panhandle region under the left exit region of the jet. Low-level flow was strong ahead of this boundary, and with good turning in the low-level winds, severe thunderstorms and tornadoes were possible.


Best estimates were that initial development of convection should occur along the dryline. A solid line of convection was expected to form by dark and sweep eastward into central Oklahoma during the evening and into eastern Oklahoma after midnight. Lack of strong surface deepening indicated minimal chance of wraparound precipitation in Oklahoma behind the arctic front, which should enter the panhandle Monday morning, 10 March, and reach southeastern Oklahoma by Monday evening.

By tomorrow, 9 March, the second major weather event should occur in the Colorado, Nebraska and Wyoming area extending into the northern part of the STORM-FEST domain. An intense snowstorm should be developing by about 0600 UTC, 9 March, with the low pressure center in southeastern Colorado providing good upslope.

The model progs indicated that the front should continue to push through the STORM-FEST domain during the next 24-h. Snows in the western STORM-FEST domain should be tapering off by 1800 UTC, 9 March, and should become more widely scattered over Colorado, Nebraska, and Kansas. The eastern part of the STORM-FEST domain should see an increase of precipitation as the low rides up the front to the northeast. Most of the precipitation should occur to the south of the domain, in Louisiana and Mississippi.

SUNDAY, MARCH 8, 1992





**OPERATIONS SUMMARY****8 March 1992**

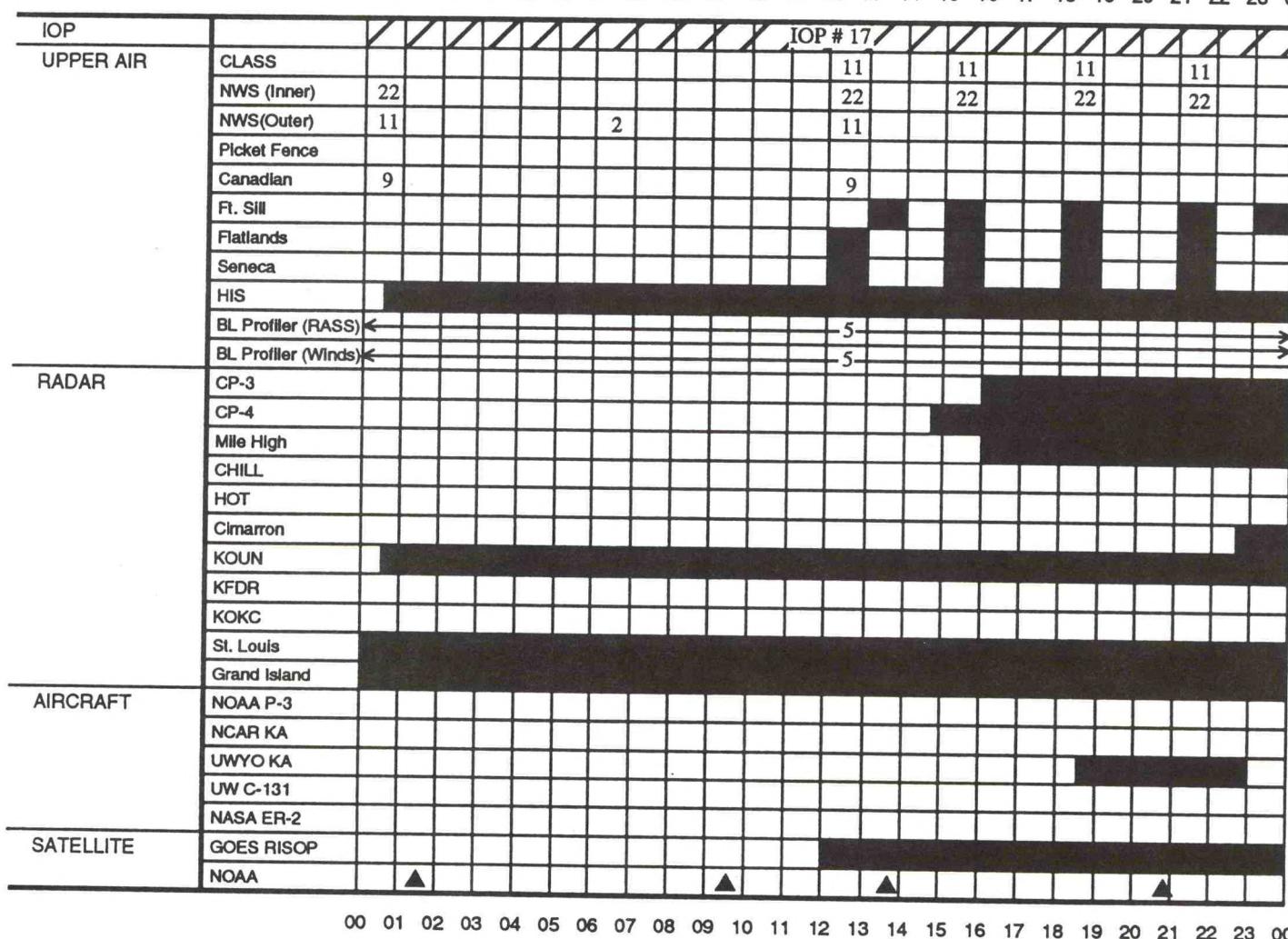
IOP 17 continued throughout the day. The following activities were conducted today in support of the IOP.

1200 UTC Inner domain NWS and CLASS soundings began to take 3 hourly soundings as the major cyclonic system moved out of the inner-mountain west into the STORM-FEST domain.

1200 UTC GOES-7 RISOP mode began.

1500 UTC The CP-3 and CP-4 radars began surveillance mode operations.

1842 UTC The University of Wyoming King Air took off from Oklahoma City to study both the upper and lower jet maxima ahead of the eastward moving polar front and southward moving arctic front. The aircraft ascended to 28,500 ft. flying to Amarillo, Texas, which corresponded to the center of the jet core at that altitude and within the exit region of the jet. The jet core maximum winds were at 200 mb (40 kft.). The aircraft did a parcel tracking study following a parcel downstream into Oklahoma. When the lower-level flow did not develop a well-defined jet core, the decision was made to continue the upper-level jet investigation. When fuel ran short, the aircraft terminated the parcel tracking mission and flew directly back to Richards-Gebaur AFB. The aircraft landed at 2252 UTC.


2300 UTC The NSSL Cimarron radar became operational as convection began to develop in southwest Oklahoma and continued until 0520 UTC, 9 March. Convection occurred within the vicinity of the Little Washita Basin, but only 0.1 inch of precipitation was recorded within the rainguage network. In addition, data for this event were also collected from the ARS rainguage network, and the two USGS streamguage sites. Archive II data were collected for the WSR-88D radar at Norman until 0700 UTC, 9 March.

**STORM-FEST**  
**HOURLY COLLECTION OF DATA**

Date: 8 March  
Julian Day: 68

Time (UTC)

| DATA TYPE | SOURCE | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

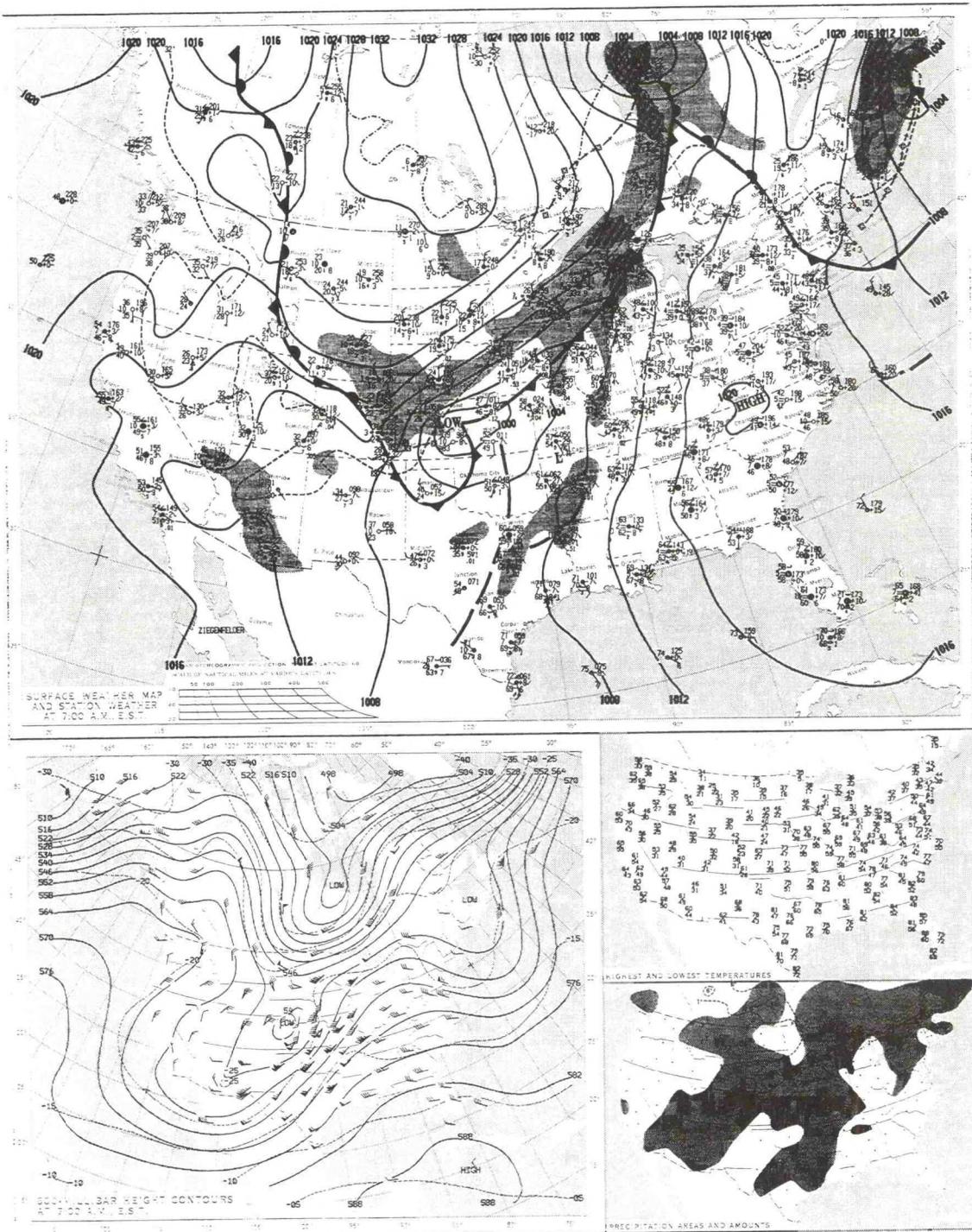


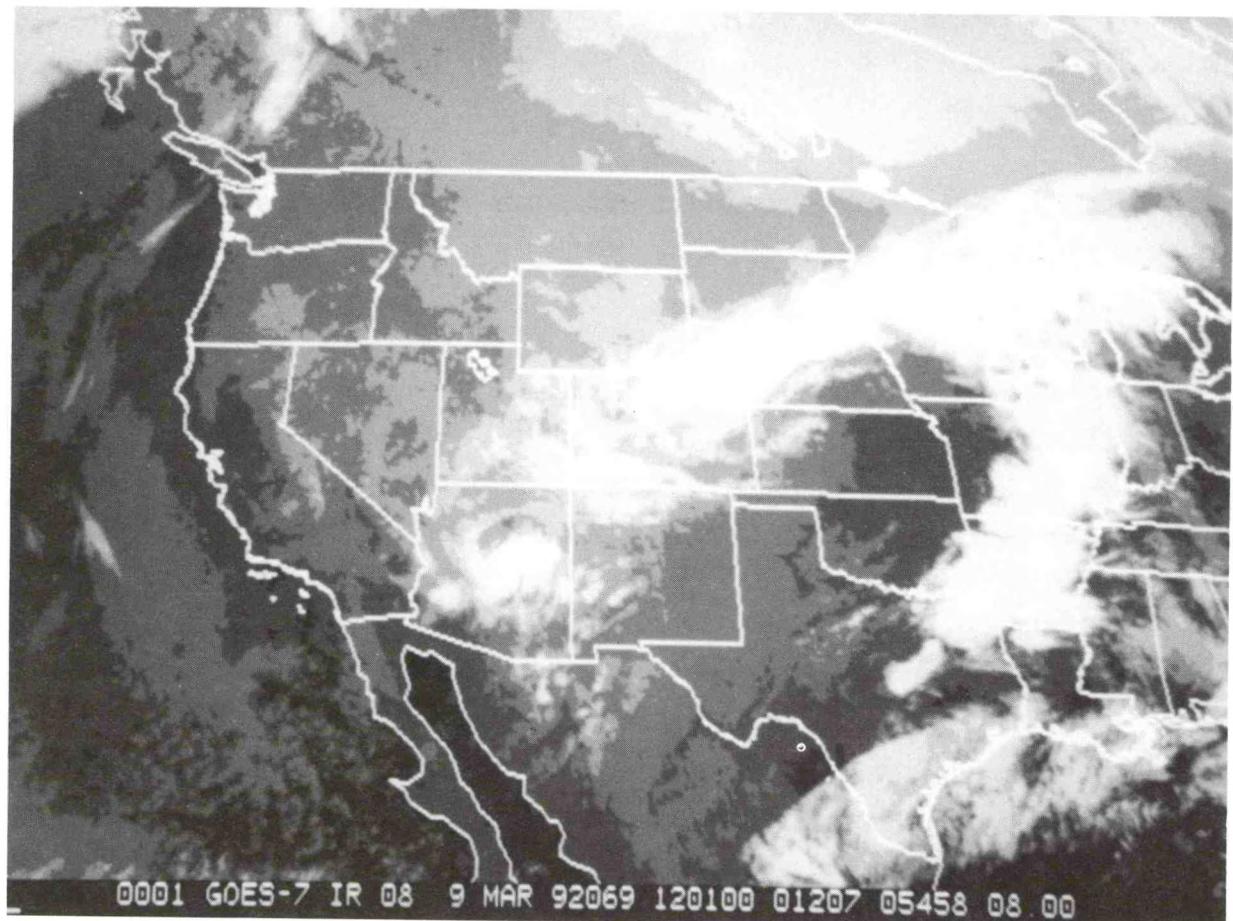
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 38 of 42 stations reported; 2 station intermittent.     |
|                 | AWOS  | 45 of 47 stations reported; 37 stations intermittent.   |
|                 | HPCN  | 73 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 7 stations intermittent.    |
|                 | PROFS | 22 of 22 stations reported; 4 stations intermittent.    |
|                 | SAO   | 380 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported.                             |

**NOTES:**


**WEATHER SUMMARY****9 March 1992**


As forecasted, a deep surface low developed over southeast Colorado, which produced thunderstorms in eastern Colorado and Wyoming. As the arctic front moved into Colorado, it enhanced the deep upslope conditions over the front range causing very heavy snow. By 1200 UTC, almost two feet of snow had fallen from Boulder to Ft. Collins, Colorado. During this period, thunderstorms developed along the dryline/Pacific front that moved into Texas and Oklahoma. Moderate convection developed over Oklahoma, but only light precipitation occurred over the Little Washita Basin. The arctic front began to move into the boundary layer domain at about 1200 UTC, with a broad band of cloud and precipitation north of the front. During the next 12- to 24-h, the front was expected to continue moving south and east through the STORM-FEST domain.

Precipitation was expected to continue behind the arctic front as it passed through the STORM-FEST domain. There was a possibility of some light precipitation over Little Washita Basin between 0200 UTC and 0800 UTC, 10 March, but liquid amounts were forecasted to be less than 0.2 inches. Precipitation ahead and along the front was likely to occur in thunderstorms embedded in stratiform precipitation.

Over the next 24- to 48-h after this major winter storm had moved to the east, a weak shortwave was expected to move into the STORM-FEST domain. This would develop a warming trend ahead of the shortwave/cold front, but trajectories would be from the southwest so warming was not expected not be dramatic ahead of the front.

MONDAY, MARCH 9, 1992





**OPERATIONS SUMMARY****9 March 1992**

IOP 17 continued throughout the day. The following activities were conducted today to support IOP 17.

0000 UTC CP-3 and CP-4 went into a dual Doppler mode as a line of echoes moved into the south dual Doppler lobe of the radars.

0200 UTC CP-3 and CP-4 went back into surveillance mode after the band of echoes dissipated.

0522 UTC The NSSL Cimarron stopped collecting data, when all precipitation moved out of radar range.

0554 UTC The NOAA P-3 took off to study the frontal structure in Nebraska and cyclone development in western Kansas. The aircraft flew northward at 2 kft. AGL into the cold air, and then ascended briefly into the warm air. The aircraft then returned southward from Sioux Falls, SD, on a constant altitude radar survey through the front. It then ascended to dropwindsonde altitude near St. Joe, MO, (encountering hail) and released sondes along a "saw-tooth" pattern toward Grand Island, NE. "Porpoise" patterns were then flown through the front north of North Platte, NE. The aircraft then flew southward into Kansas where it located the low (calm winds) at 744 mb (1102 UTC) and again at 833 mb (1139 UTC). The aircraft flew eastward studying the low-level front, along an airway that allowed it to "porpoise" from minimal altitude northwestward through the front into central Nebraska. The P-3 then climbed to high altitude where dropsondes were released at a high rate to investigate the fine-scale spatial resolution along the track of the storm. The aircraft landed at 1519 UTC.

1156 UTC The University of Washington C-131's mission was designed to compliment the first P-3 mission, but concentrated observations in the precipitation region behind the arctic cold front that was moving southward into the STORM-FEST domain. The C-131 took off at 1156 UTC and flew northwest where it intercepted the front. The aircraft flew a "porpoise" pattern up the frontal surface, crossing the front, and flew

into Nebraska before turning back southeast on a track west of the original flight track. The C-131 then flew "porpoise" pattern back down the front toward central Kansas, turned northwest and intercepted the front at 5 kft. The aircraft "zig-zagged" back through the front toward Richards-Gebaur AFB and landed at 1804 UTC.

1200 UTC NWS outer domain soundings and Canadian soundings ended.

1240 UTC The first NCAR King Air flight took off to examine the cold front just as it entered and moved through the boundary layer array. The front arrived in the early morning with clear conditions south of the front and overcast conditions behind the front. "Flux" legs were flown in the boundary layer domain southeast to northwest ahead of the front at 2k, 1.9k, 2.5k and 3 kft. (AGL). After completing the last "flux" leg at 1314 UTC, the aircraft descended to 2.3 kft and proceeded from Powhattan, KS, toward Home City, KS, intercepting the front at 1310 UTC. Passes were made through the front at 2.3k, 2.4k and 3.7 kft. At 1435 UTC, the aircraft descended to 2.1 kft. and flew toward the ASTER facility overlying ASTER at 1447 UTC. At 1451 UTC the aircraft headed for Richards-Gebaur AFB landing at 1527 UTC.

1530 UTC The University of Wyoming King Air took off to investigate the structure of the front and conduct an "M-surface" investigation. Shortly after takeoff the aircraft reported problems with the transponder and had to land at the Kansas City downtown airport for repairs. Following repairs, the aircraft took off to undertake an aircraft mission with the University of Washington C-131 [see second flight of the C-131 below (2000 UTC)].

1700 UTC The front had passed the boundary layer array by 1700 UTC when the NCAR King Air took off for a second mission to continue to monitor the diurnal modification of the arctic front. At this time, diurnal heating was occurring in the clear air ahead of the front with overcast conditions behind the front. This flight was designed to: 1) investigate turbulence characteristics, mean structure and kinetic energy dissipation in the evolving front, and 2) measure the sensible heat flux in the clear air in the subcloud layer behind the front.

After takeoff the aircraft did a missed approach sounding at Topeka, Kansas, and continued north through the front below cloud based until IFR conditions required the aircraft to ascend. The aircraft climbed and turned south toward Topeka, KS, into the clear air. Thereafter, aircraft penetrations were made normal to the front from the south. Sensible heat flux was measured by means of stacks at levels between 0.5 and 1.8 km MSL in the clear air and at 0.8 and 1.3 km MSL in the subcloud layer. Frontal penetrations, however, were only made at 0.5 km MSL, near cloud base. Frontal penetrations found a sharp transition in both horizontal and vertical velocity, as well as temperature and humidity across the front. The mission was completed with an along front (in the clear air) flight of approximately 100 km toward the east. The aircraft landed at Richards-Gebaur AFB at 2033 UTC.

1700 UTC The CP-3 and CP-4 radars had to terminate operations due to wind loading on the antennas.

2000 UTC The well-defined arctic front, studied earlier in the day in Nebraska and northeast Kansas, had moved southward through Kansas City and Richards-Gebaur AFB. A well defined, narrow band of non-precipitating cumulus clouds had formed along the leading edge of the front. At this time the University of Washington C-131 and University of Wyoming King Air aircraft took off to investigate the along-front structure of the cold front's leading edge. This mission was carried out between 2000 UTC and 0000 UTC, 10 March.

An initial attempt was made to stack the two aircraft to work along the same line (extending approximately from Richards-Gebaur AFB to the northeast into Missouri). However, due to the shallow nature of the front (< 4 kft.) and the problems associated with IFR vs. VFR, this pattern could not be carried out. Thus, the Wyoming King Air flew the leading edge of the front along a line from Richards-Gebaur AFB down to the southwest, also taking some short across-front measurements at the end of the flight legs. During this same time, the C-131 was flying in northern Missouri parallel to the front. The initial track was some distance back from the leading edge of the front. During the latter portion of the flight, the C-131 moved up to the leading edge of the front where it encountered

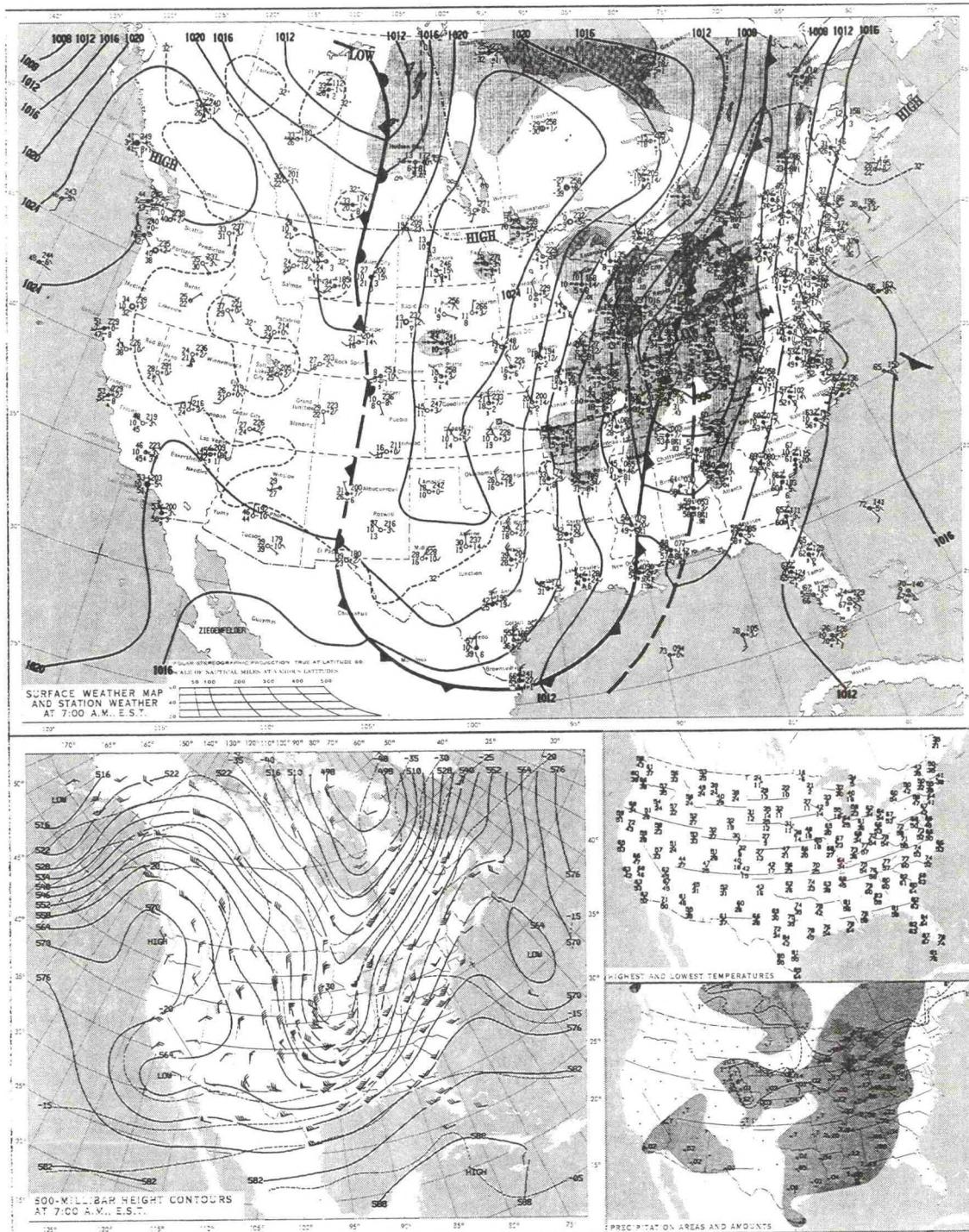
graupel (with one lightning strike to aircraft) and icing (at  $-3^{\circ}\text{C}$ ) on the approach to Richards-Gebaur AFB. The University of Wyoming King Air landed at 2316 UTC and the C-131 aircraft landed at 2344 UTC.

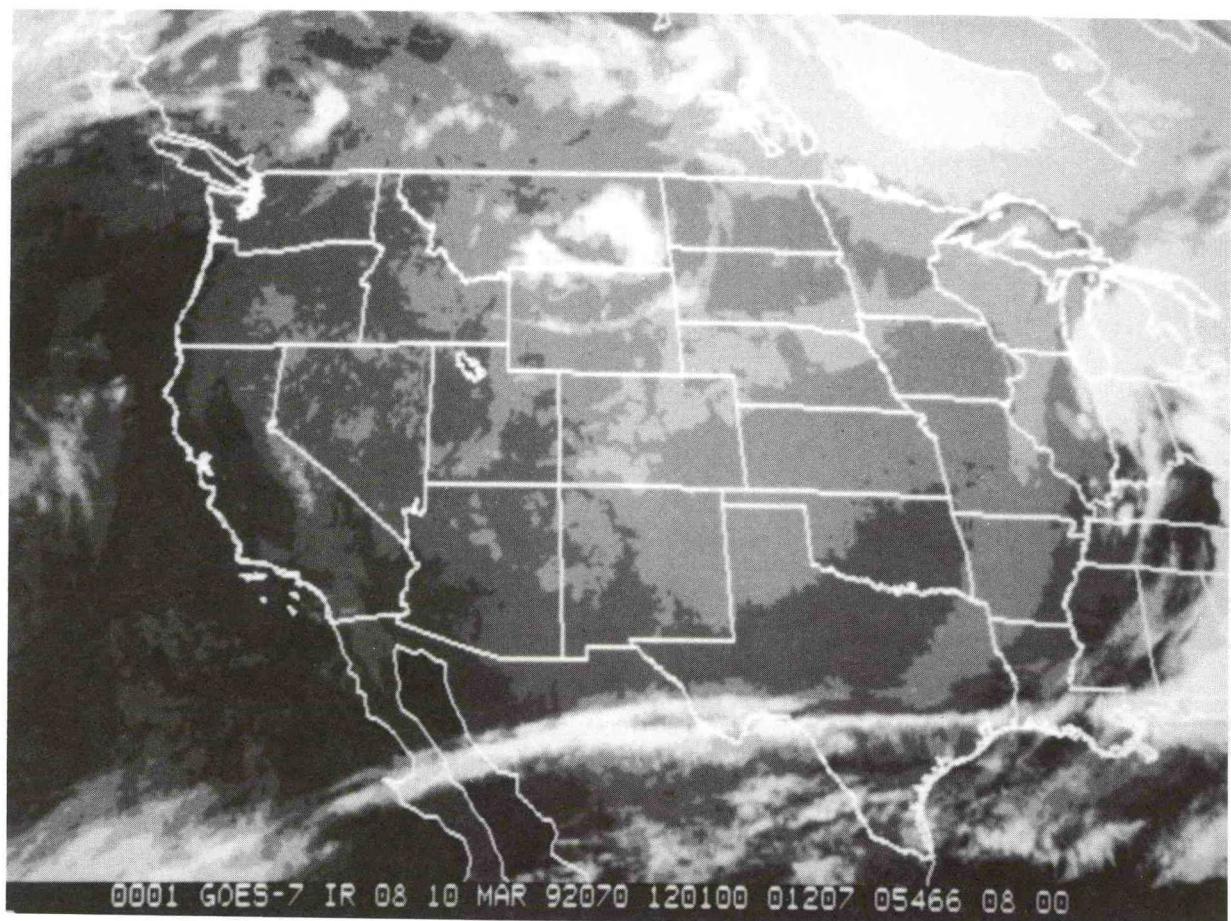
2306 UTC The NCAR King Air took off for a third mission to continue to examine the diurnal modification of the front following the flight procedures carried out in the two earlier missions. The front had pivoted to a southwest-northeast orientation through central Missouri directly over the PAM network. The aircraft flew from Richards-Gebaur AFB to Columbia, MO, to reach the warm sector of the front. Flight stacks were flown between 0.65 kft and 1.3 kft MSL to measure the sensible heat flux. Frontal penetrations were made at 0.6 kft MSL near cloud base. As in the previous mid-afternoon mission, a sharp transition zone was encountered, particularly in vertical velocity. This latter feature was also associated with a line of cumulus congestus at the front that evolved between the second and this third mission. The aircraft returned to Richards-Gebaur AFB early, at 0142 UTC, 10 March, in order to avoid icing problems which were beginning to be reported in the Kansas City area.

## STORM-FEST HOURLY COLLECTION OF DATA

Date: 9 March  
Julian Day: 69

### Time (UTC)


## Comments


|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 38 of 42 stations reported; 5 station intermittent.     |
|                 | AWOS  | 47 of 47 stations reported; 9 stations intermittent.    |
|                 | HPCN  | 73 of 73 stations reported; 1 station intermittent.     |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 5 stations intermittent.    |
|                 | PROFS | 22 of 22 stations reported; 11 stations intermittent.   |
|                 | SAO   | 394 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 13 of 13 stations reported; 1 station intermittent.     |

**WEATHER SUMMARY****10 March 1992**

The major winter storm that had affected the STORM-FEST area over the past two days continued to move eastward and at 1200 UTC was located over the Ohio valley with a broad area of precipitation both ahead of and behind the front. Strong northerly winds dominated most of the STORM-FEST domain as a 1024 mb high pressure area moved into the region. The model progs indicated that the storm system should continue to move eastward with a short wave moving down the back side of the trough in the next 24- to 36-h. This could develop some light precipitation along the front, which should be characterized by more of a windshift line rather than much of a temperature change.

TUESDAY, MARCH 10, 1992





## OPERATIONS SUMMARY

10 March 1992

IOP 17 continued through 1400 UTC. The following activities were conducted today to support IOP 17.

0100 UTC The HOT radar began collecting data and operated until 2130 UTC to document the passing of the storm system.

0600 UTC The NOAA P-3 took off to continue examining the characteristics of the frontal system that had been documented earlier within the STORM-FEST domain. At the time of the flight (0600 UTC-1400 UTC 10 March), the frontal system contained several features: a shallow "arctic" front and a deeper "polar" front behind the arctic front, with both situated over the southeastern U.S. (Arkansas, Mississippi, Alabama). A severe squall line was located in the warm boundary of the polar front. Objectives of the flight were to document the vertical structure of both frontal zones and to survey the squall line using multiple-view Doppler radar. The flight track selected was from northwestern Arkansas to Birmingham, AL. The mission succeeded in documenting the structure of the arctic front, including internal waves in a capping frontal inversion; the polar front, which appeared to extend from the tropopause to the surface, which included a well-defined upper-level jet; and a squall line. The squall line contained dramatic reflectivity features, including a possible mesocyclone hook-echo signature. On the return leg to Richards-Gebaur AFB, 13 dropwindsondes (approximately one every ten minutes) were deployed from 22 kft. to obtain additional documentation of the frontal features sampled on the earlier outbound portion of the mission.

1200 UTC NWS Inner domain and CLASS supplemental soundings terminated.

1400 UTC The NOAA P-3 landed at Richards-Gebaur AFB and IOP 17 officially ended at this time.

**IOP 17      Summary (Bill Blumen/Mel Shapiro)**

This mid-latitude cyclonic event was monitored from the time that the maritime polar front entered the Pacific Coast between 1200 UTC and 1500 UTC on 5 March until the system moved out of the STORM-FEST area on the morning of 10 March.

Data were collected from the West Coast "Picket Fence" and NWS outer domain sounding networks. Soundings were also obtained from the participating Canadian network as the Arctic front started moving to the south. The inner NWS and CLASS sounding network were put into operation as the Arctic front approached the STORM-FEST area from the north, and as the low associated with the Pacific front reached Colorado, where an intense winter storm developed along the Colorado Rocky Mountains. All STORM-FEST inner network observing systems were in operation as the low pressure area moved into Kansas and as the Arctic front moved southward across the boundary layer array. Aircraft missions, listed above, monitored both synoptic, meso- and microscale turbulent aspects of this major mid-latitude event. All surface based and aircraft systems appeared to be up and operating satisfactorily. The principal investigators were uniformly satisfied with the planning and implementation of IOP 17.

**IOP 18:**

1600 UTC      IOP 18 began when the CP-3 and CP-4 radars became operational and collected data in both flux scan and surveillance mode. The focus of this IOP was to investigate the sensible heat and momentum budgets during a cold air outbreak in a baroclinic boundary layer within the boundary layer array. Two approaches were used — an aircraft method and a profiler method. As part of a systems test, these methods will be compared.

1730 UTC      90 minute soundings began at the Seneca CLASS site ending at 2230 UTC.

1753 UTC The NCAR King Air took off to fly the boundary layer mission in the boundary layer array. The proposed mission had to be cut short because high winds slowed operations. Wave like signatures were observed in the vertical velocity, temperature and humidity data within the mixed layer. Convection waves were observed from just above the inversion to 10 kft. MSL.

2204 UTC The NCAR King Air landed and IOP 18 ended.

2215 UTC CP-3 and CP-4 ended operations.

**Other Activities:**

Planning began for IOP 19 to study the structure of the Alberta Clipper that was forecasted to move into the STORM-FEST domain tomorrow, 11 March.

**STORM-FEST**  
**HOURLY COLLECTION OF DATA**

Date: 10 March  
Julian Day: 70

Time (UTC)

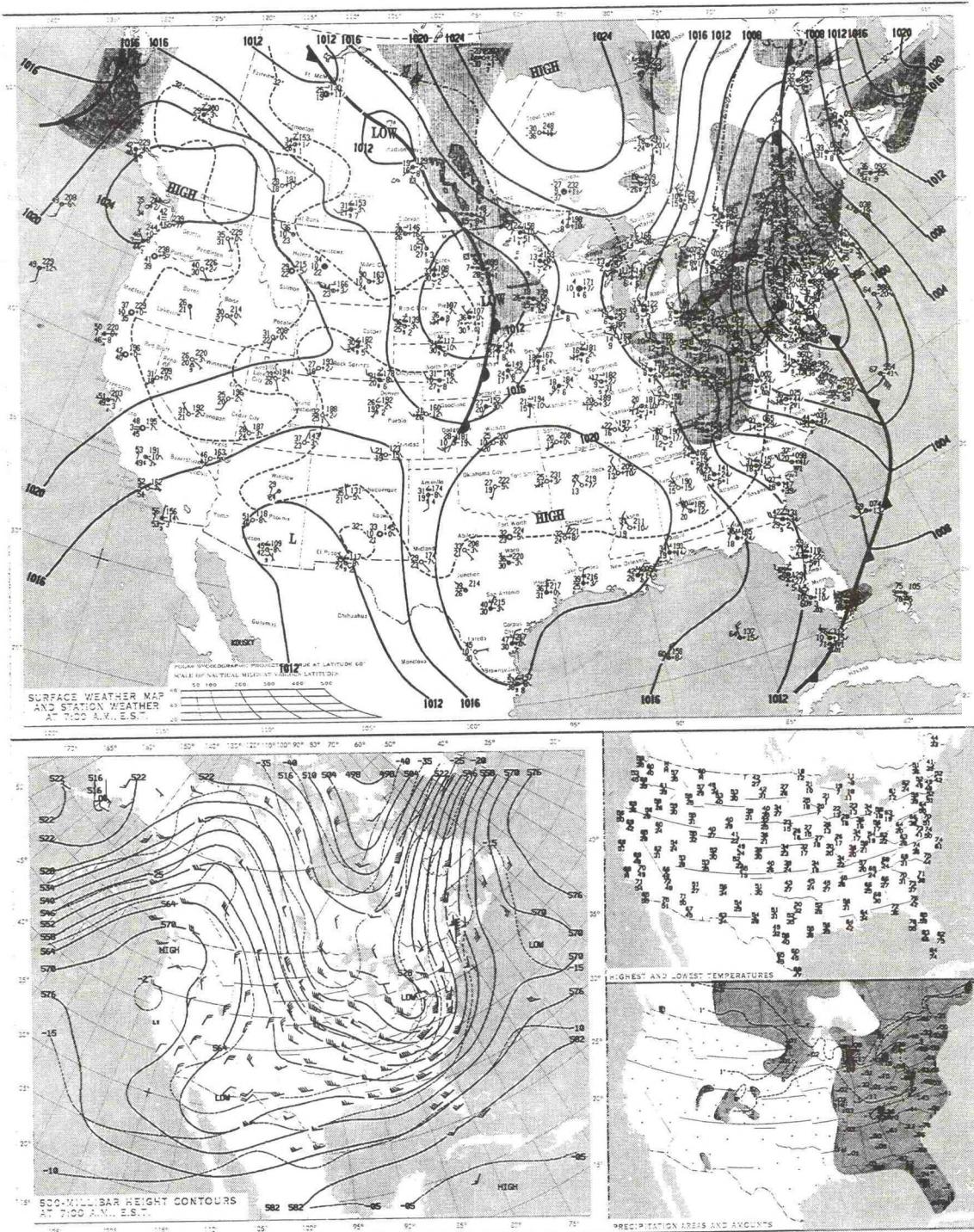
| DATA TYPE | SOURCE              | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00       |
|-----------|---------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----------|
| IOP       |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
| UPPER AIR | CLASS               | 11 |    |    | 11 |    |    | 10 |    |    | 11 |    |    | 10 |    |    |    |    |    |    |    |    |    |    |    | IOP # 18 |
|           | NWS (Inner)         | 22 |    |    | 22 |    |    | 22 |    |    | 21 |    |    | 22 |    |    |    |    |    |    |    |    |    |    |    |          |
|           | NWS(Outer)          | 11 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 11       |
|           | Picket Fence        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
|           | Canadian            | 9  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 9        |
|           | Ft. Sill            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
|           | Flatlands           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
|           | Seneca              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
|           | HIS                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
|           | BL Profiler (RASS)  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 5        |
|           | BL Profiler (Winds) |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 5        |
| RADAR     | CP-3                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
|           | CP-4                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
|           | Mile Hlgh           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
|           | CHILL               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
|           | HOT                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
|           | Climarron           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
|           | KOUN                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
|           | KFDR                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
|           | KOKC                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
|           | St. Louis           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
|           | Grand Island        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
| AIRCRAFT  | NOAA P-3            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
|           | NCAR KA             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
|           | UWYO KA             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
|           | UW C-131            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
|           | NASA ER-2           |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
| SATELLITE | GOES RISOP          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |          |
|           | NOAA                | ▲  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | ▲        |

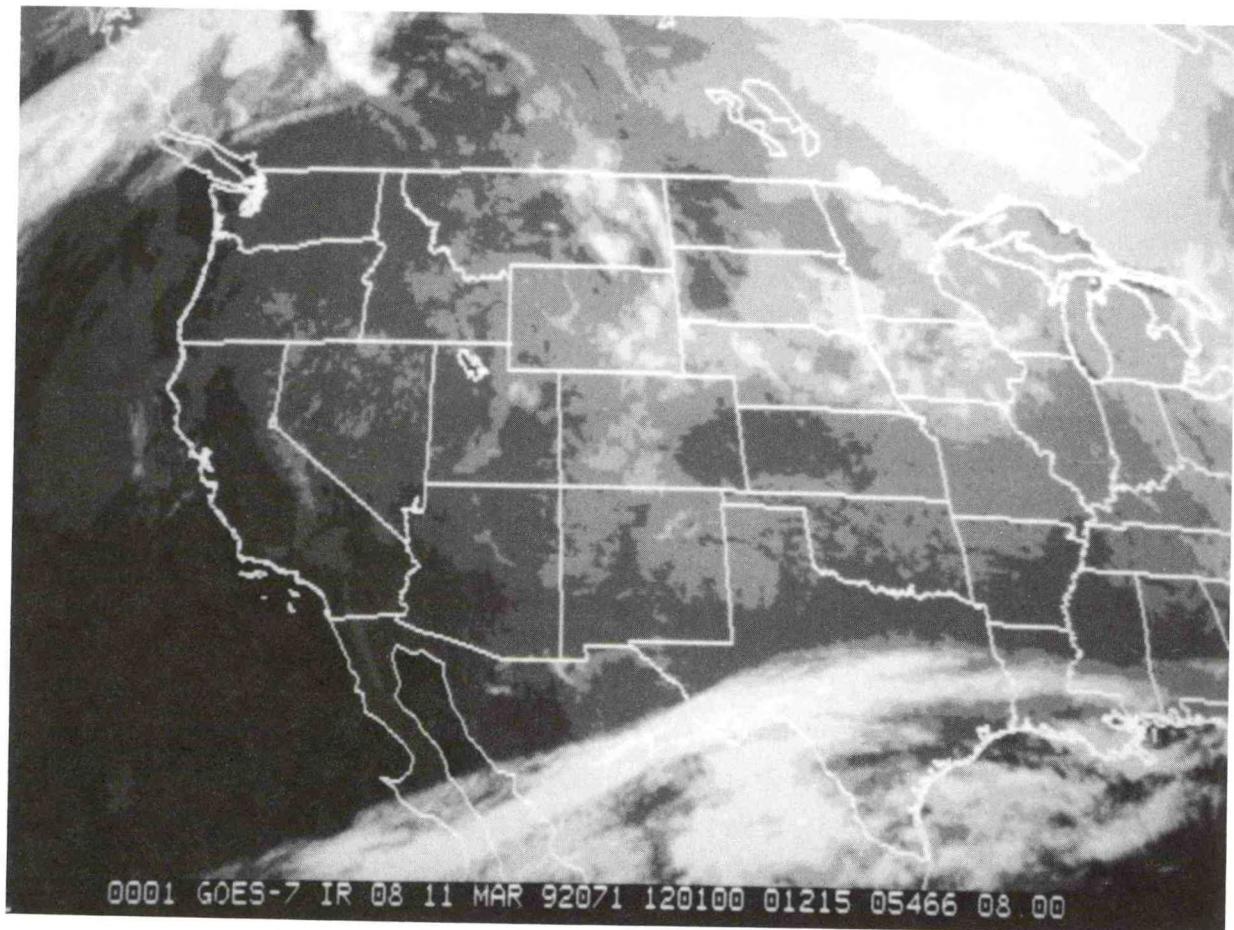
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 38 of 42 stations reported; 2 station intermittent.     |
|                 | AWOS  | 47 of 47 stations reported; 2 stations intermittent.    |
|                 | HPCN  | 72 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 35 of 35 stations reported; 19 stations intermittent.   |
|                 | PROFS | 22 of 22 stations reported; 22 stations intermittent.   |
|                 | SAO   | 391 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported.                             |

**NOTES:**


**WEATHER SUMMARY****11 March 1992**


After passage of the major winter storm system out of the STORM-FEST domain, a series of short wave disturbances moved down from the northern Plains into the center of the STORM-FEST domain. An "Alberta Clipper" formed at the surface in association with this upper air scenario, and was responsible for the formation of 1-5 inches of snow across southern Minnesota, northern Iowa, and western Illinois, as well as light rain showers across Missouri and eastern Kansas. On the backside of the upper level trough, a strong upper-level jet, (analyzed in the NMC analyses at 300 mb as only 70-80 kt, but in cloud-tracking was estimated to be 110 kt over North Dakota at 1200 UTC) propagated rapidly southward, with a strong diffluent exit region over southern Nebraska at 1800 UTC and over eastern Kansas at 0000 UTC (12 March) though less diffluent by that time. The surface low remained at 1009 mb throughout the day as it travelled from southwestern Minnesota to eastern Kansas.

A weak warm front extended from the surface low pressure and was oriented along a northwest to southeast line that could develop rain/snow bands. This front was forecast to move into the dual-Doppler array.

After this event the MRF model indicated that not much interesting weather was expected in the STORM-FEST domain until 16-17 March.

WEDNESDAY, MARCH 11, 1992





**OPERATIONS SUMMARY****11 March 1992**

As discussed yesterday IOP 19 was carried out to study the warm frontal structure, upper-level jet dynamics and associated precipitation bands of the "Alberta Clipper" that formed in response to a series of short wave disturbances that moved down the back side of the trough. The following activities were conducted to support the IOP.

1200 UTC CLASS soundings were the only remaining soundings resources available. These began at 1200 UTC and were to continue until 0600 UTC (12 March) although the number of sites that could release soundings after 0000 UTC decreased due to diminishing resources at various sites. Radiosondes were also released from Ft. Sill and at the Flatlands radar sites.

1200 UTC GOES-7 RISOP mode began and was scheduled to continue until 0000 UTC, 12 March.

1500 UTC CP-3 and CP-4 radar became operational collecting dual-Doppler radar data in light rain. These radar echoes propagated into the array from southeastern Nebraska and took on the appearance of bands oriented along the low-level isotherms. As these echoes moved into the southern dual Doppler lobe their strength decreased.

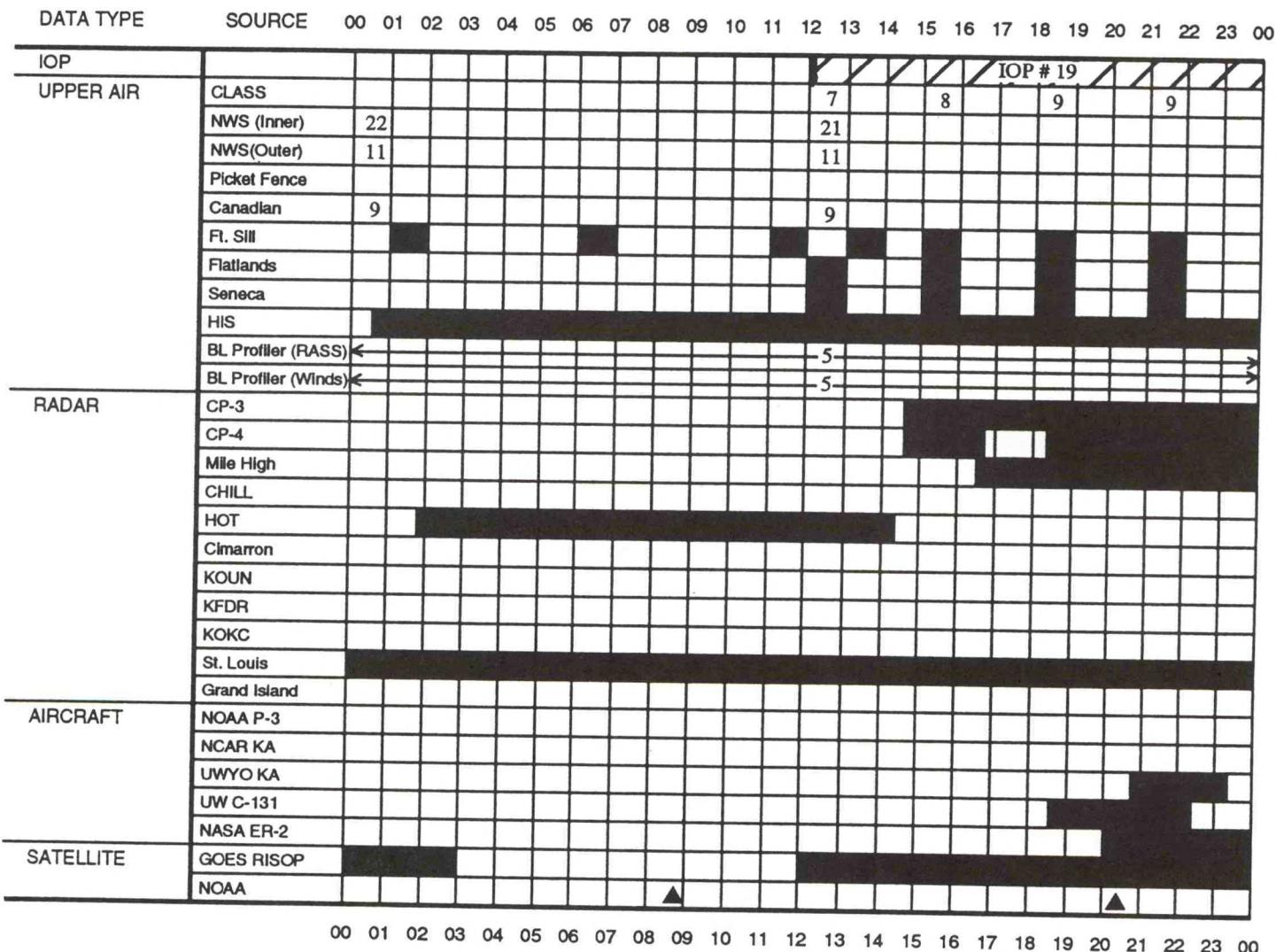
1806 UTC The Wyoming King Air took off from Richards-Gebaur AFB on a mission designed to map out ageostrophic winds in the exit region of the upper-level jet over southern Nebraska. Though the original guidance was to position the aircraft in central Nebraska, McIDAS tracked cloud motions suggested a better position for the axis of the jet core to be  $171^{\circ}/44$  n mi from the Kearney, Nebraska, VORTAC. The aircraft recorded rapidly increasing wind speeds as it approached this position from southern Nebraska with peak values of 45 m/s at 30 kft. altitude. The King Air then flew the "LAD" pattern (designed by John Marwitz for mapping parcel accelerations and ageostrophic winds in the jet exit region) from this position to a location about 80 n mi downstream (southeast).

The King Air terminated the LAD mission after making only 2 intersects of the jet core, in an attempt to conduct an "M surface" (symmetric instability/absolute momentum) mission over the dual-Doppler radar array. At 2057 UTC, the aircraft was vectored to a position of  $321^{\circ}/70$  n mi from the Topeka VORTAC to start the "M surface" pattern at 8500 ft altitude (near the  $-5^{\circ}\text{C}$  level). The objective was to determine whether there was evidence of conditional symmetric instability in a region where the precipitation bands were decidedly oriented along the thermal wind (NW-SE). However, by the time the King Air arrived at its destination, the precipitation pattern had changed to a less conspicuous banded appearance and the echoes were too far away for the aircraft to perform the "M surface" mission successfully. The King Air returned to Richards-Gebaur AFB at 2227 UTC.

1846 UTC The University of Washington C-131, took off from Richards-Gebaur AFB on a mission to observe precipitation bands near and over the dual-Doppler radar array. The aircraft ascended to 15 kft. as it proceeded to  $245^{\circ}/25$  n mi from the Topeka VORTAC, which was the starting point for the precipitation band transects. Northeast-southwest oriented transects were conducted starting at 1956 UTC at the 15 and 11 kft. levels on a precipitation band west of Omaha. The aircraft was then advised to move to a position in the northern dual-Doppler radar lobe ( $184^{\circ}/48$  n mi from the Topeka VORTAC) to begin transects there at 2024 UTC, with the first endpoint being  $197^{\circ}/97$  n mi. Transects were made at 11, 6, and 3 kft. levels across highly elongated precipitation bands before returning to Richards-Gebaur AFB at 2220 UTC.

1957 UTC The NASA ER-2 took off from Houston, TX, at 1957 UTC on a mission to investigate mesoscale gravity wave structure using remote sensing instruments. This flight was coordinated with that of the Wyoming King Air, to attempt to relate jet exit region dynamics with gravity wave generation. The ER-2 flew at 20 km along a northeastward track from Houston to Urbana, IL (2200 UTC), westward to Lincoln, Nebraska (2300 UTC), southeastward to Jonesboro, Arkansas (0000 UTC, 12 March), and back to Houston, landing at 0140 UTC, 12 March. Observations were made by the MTS, HIS, and MAMS sensors.

2346 UTC The NCAR King Air took off to sample the structure of the warm front that was positioned in eastern Kansas at 0000 UTC (to its mid-tropospheric location in western Illinois), in search of any relationship between patterns in the precipitation field and this frontal feature. The aircraft proceeded southwestward from Richards-Gebaur AFB to find the position of the low-level front. The aircraft reported rising temperatures to +3°C at the 3 kft. level as it proceeded to (38.12 N, 95.12 W) lat/lon. This point marked the beginning of the cross-frontal "porpoise" traverse, which started at 0053 UTC. Winds veering from 270° to 310° was experienced as the King Air passed upward through the 7 kft. level, consistent with the rawinsonde observations from Columbia, MO, of a low-level inversion whose base (top) was at 5k (7500) ft. Because of the possibility of a deeper frontal layer, the aircraft was advised to increase the top of the porpoise from 7 to 13 kft. Another inversion was found at 3300 m MSL (10 kft.), consistent with NWS sounding cross sections through the region. The King Air reported an inversion base at 13 kft. at 0136 UTC, and the top of the inversion at 13.9 kft with a potential temperature of 290K. This height seemed to be higher than that expected from the rawinsonde analyses.


Because of the complexity of the situation, the aircraft was told to continue the "porpoise" pattern between the 13 kft. and 4.5 kft levels all the way to Quincy, Illinois. On its last descent prior to attempting a dropwindsonde release, the aircraft scientist reported a low-level inversion with a base at 882 mb at (39.2N, 92.8W) lat/lon. Dropsonde releases were attempted at the 20 kft. altitude following this last "porpoise" pattern. The first dropsonde release at 0232 UTC (12 March) was successful, but subsequent attempts failed due to LORAN locking, and this part of the mission was discontinued 10 min. later. Shallow "porpoise" patterns were conducted near the 850 mb level on the aircraft return leg to Richards-Gebaur AFB. The aircraft landed at 0328 UTC (12 March).

# STORM-FEST

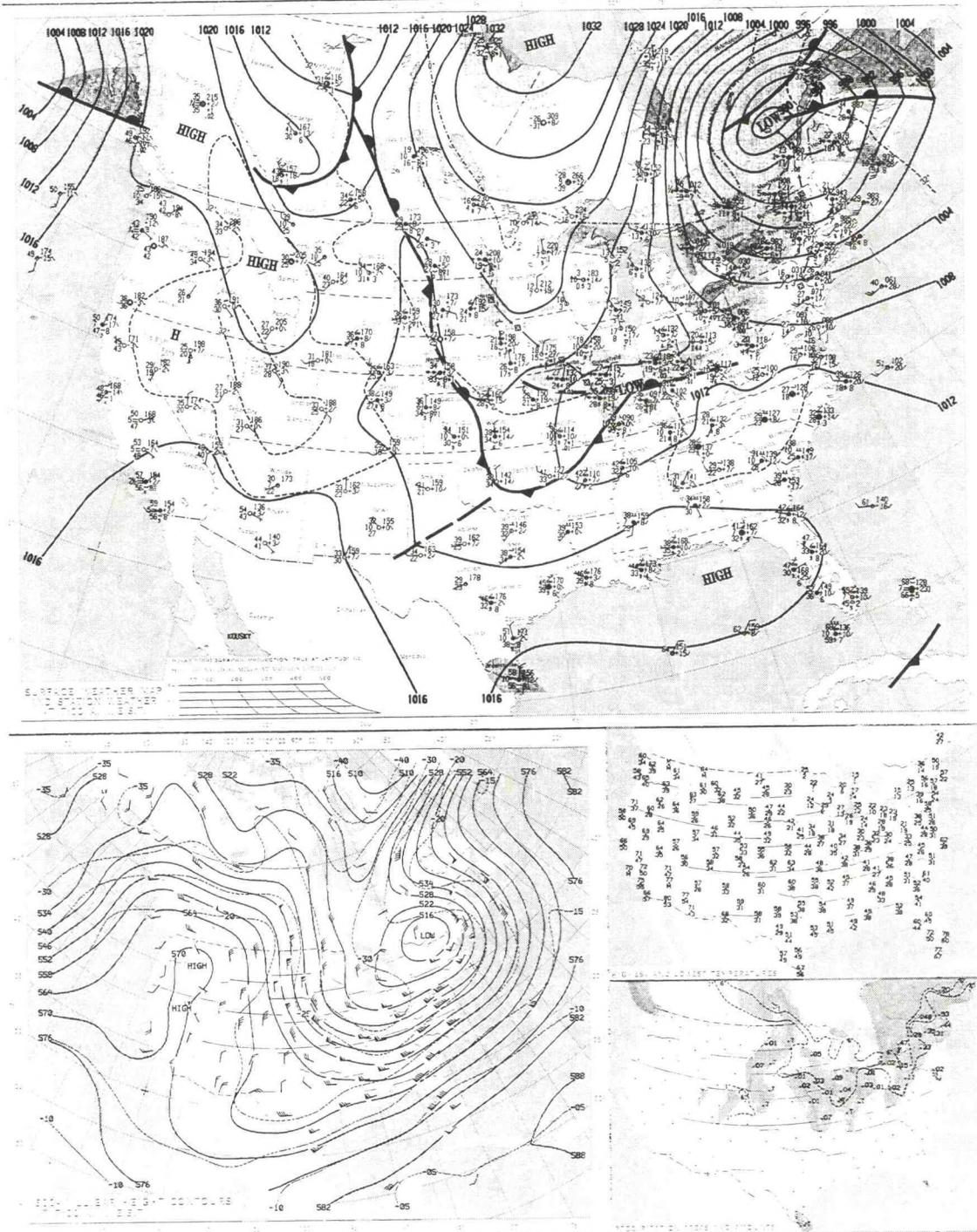
## HOURLY COLLECTION OF DATA

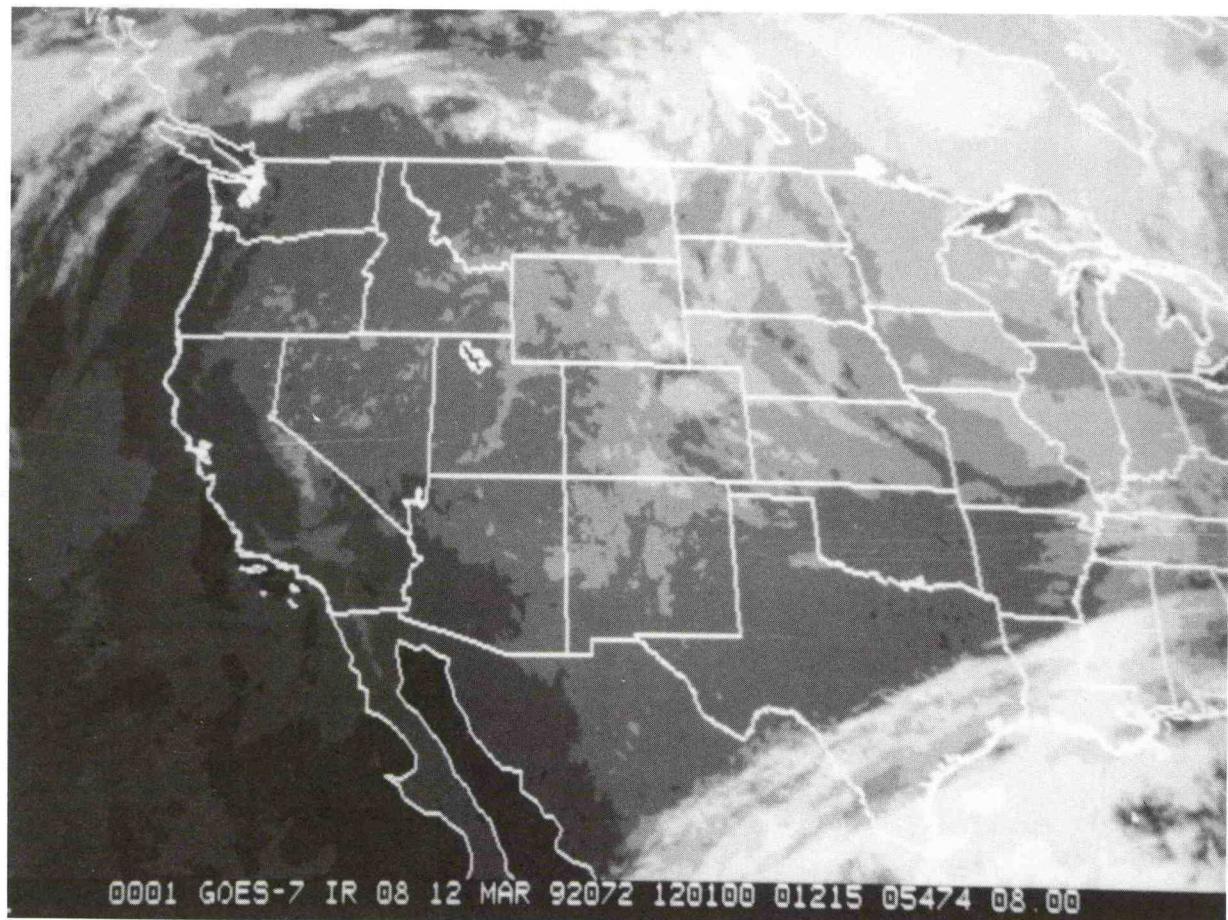
Date: 11 March  
 Julian Day: 71

Time (UTC)



Comments


|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 39 of 42 stations reported; 6 station intermittent.     |
|                 | AWOS  | 47 of 47 stations reported; 2 stations intermittent.    |
|                 | HPCN  | 72 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAM5  | 34 of 35 stations reported; 15 stations intermittent.   |
|                 | PROFS | 22 of 22 stations reported; 22 stations intermittent.   |
|                 | SAO   | 396 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported.                             |


**NOTES:**

**WEATHER SUMMARY****12 March 1992**

The surface cold front that was in northern Arkansas, stretching across the Red River, was expected to move out of the STORM-FEST domain by evening. Very light snow was expected to taper off over Missouri and northern Arkansas by 0000 UTC (13 March). The next "Alberta Clipper" was expected to move into northeast North Dakota, by 1800 UTC, 13 March. This system was expected to develop mid and low clouds over Minnesota, the eastern Dakotas, and eastern Iowa by evening. Only very light snow was expected with this system in the northeast area of the STORM-FEST domain beginning on 14 March. This system was similar to the one that moved through the area yesterday (11 March) except that it would be warmer and probably drier.

THURSDAY, MARCH 12, 1992





**OPERATIONS SUMMARY****12 March 1992**

0600 UTC IOP 19 ends with the last of supplemental CLASS soundings.

This IOP was highly successful. The aircraft and Doppler radars were well-coordinated for investigating the relationship between upper-tropospheric jet dynamics, gravity wave generation and structure, precipitation band structure, and warm frontal/low-level inversion structures. Only the "M-surface" part of the mission was of dubious success.

**Other Activities:**

With generally fair weather and light winds IOP 20 was conducted to document the non-linear flow fields between the boundary layer profilers and examine the refractive index structure of the atmosphere above the profilers as part of "system test" activities. The following activities were conducted in support of this IOP.

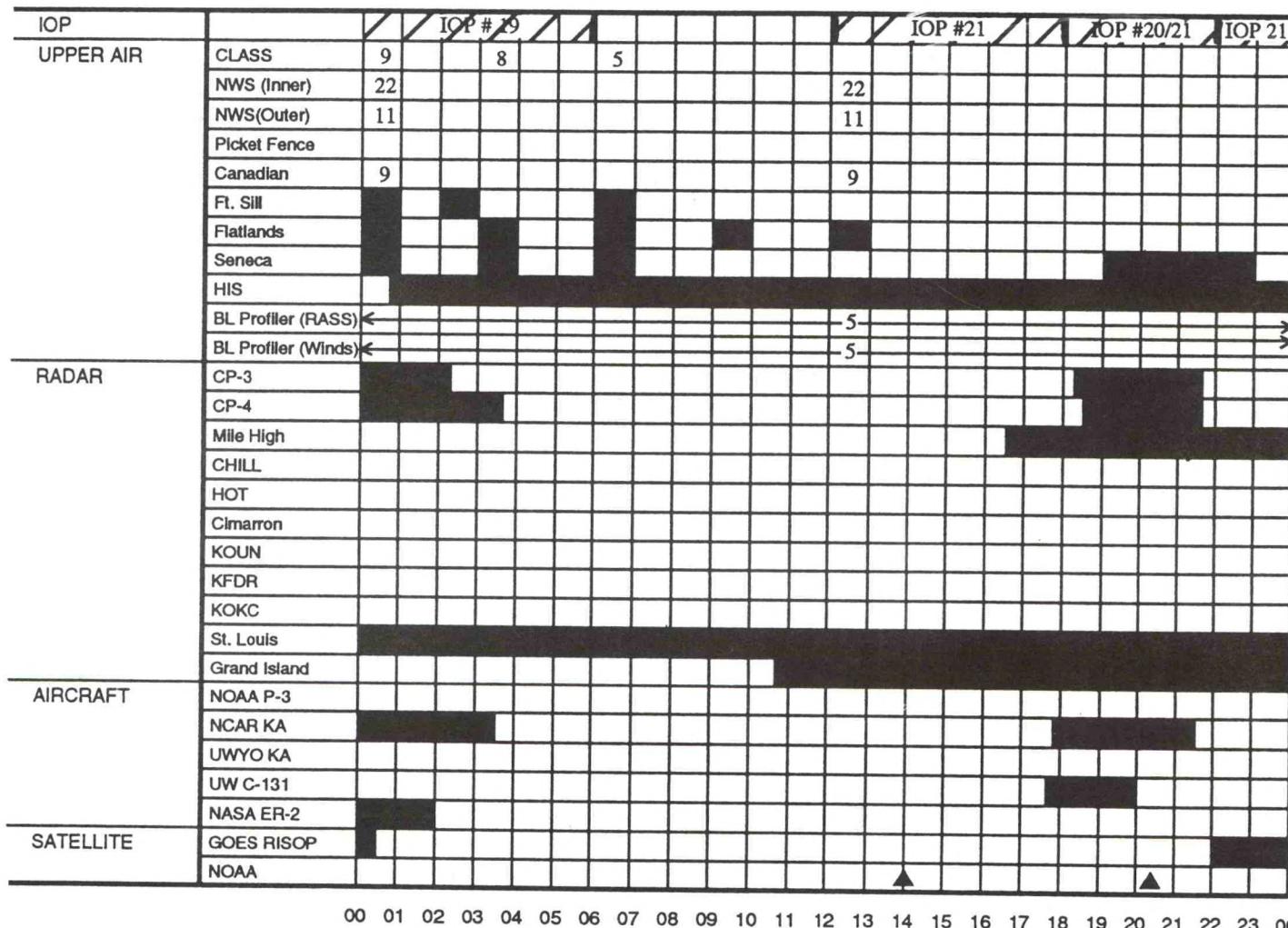
1800 UTC The NCAR King Air took off and flew to the boundary layer area to conduct its mission. The University of Washington C-131 also flew calibration legs with the King Air followed by a counterclockwise triangle flight pattern over three boundary layer profiler stations.

1800 UTC Hourly soundings to 500 mb began at Seneca, KS.

1815 UTC The CP-3 and CP-4 radars began taking clear-air dual-Doppler data in the northern lobe of the radar array.

2200 UTC The University of Washington C-131 aircraft landed.

2100 UTC Seneca, KS, soundings end.


2130 UTC The NCAR King Air landed.

**STORM-FEST**  
**HOURLY COLLECTION OF DATA**

Date: 12 March  
Julian Day: 72

Time (UTC)

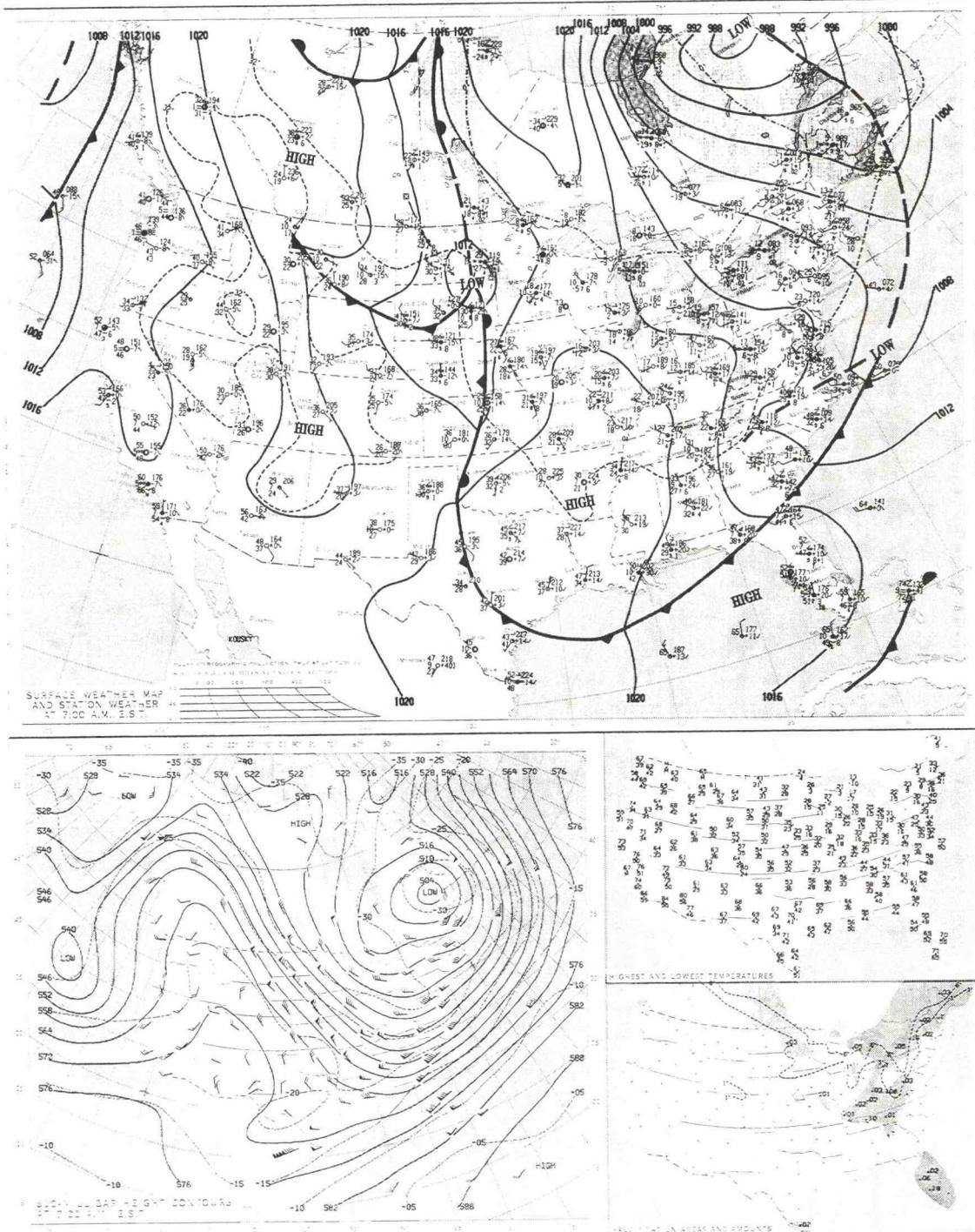
| DATA TYPE | SOURCE | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|-----------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

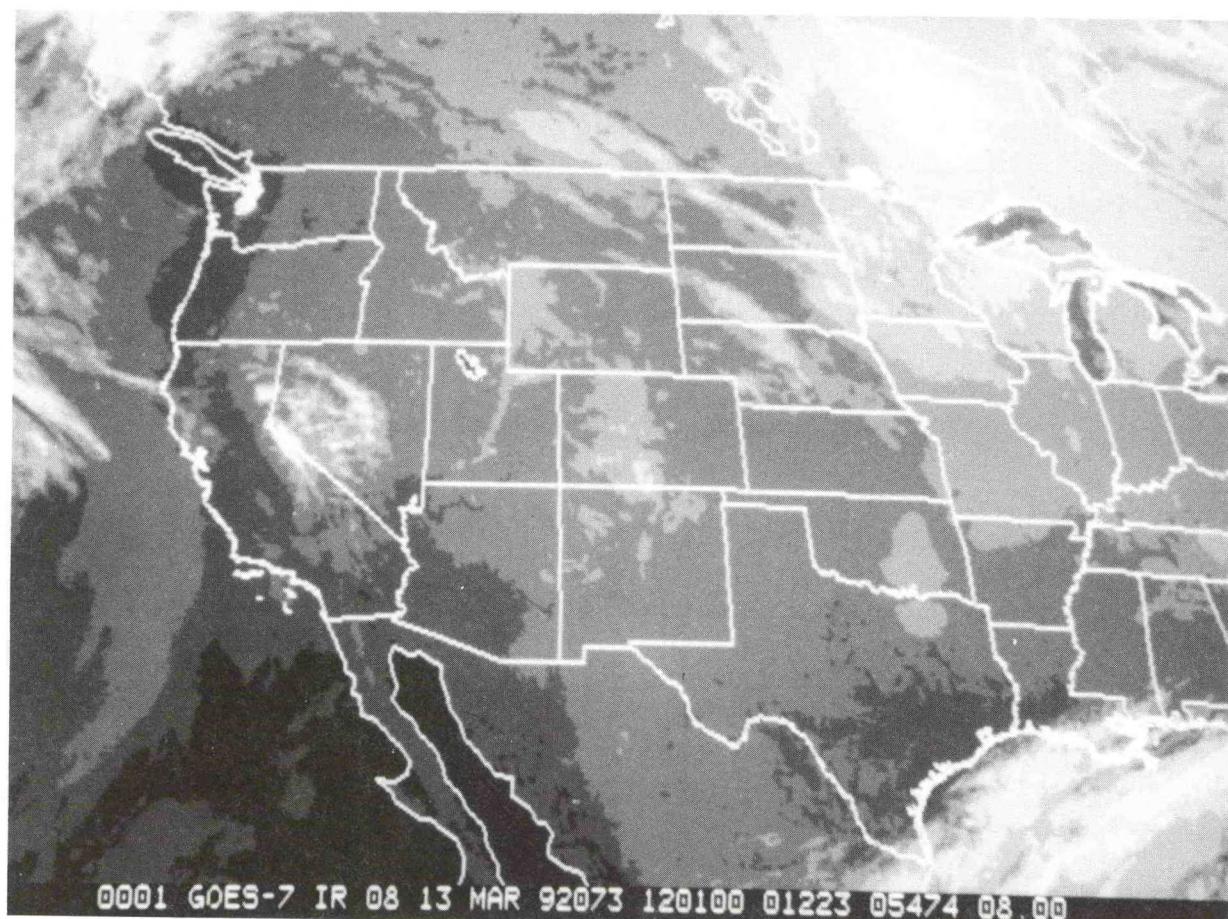


00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 41 of 42 stations reported; 10 station intermittent.    |
|                 | AWOS  | 47 of 47 stations reported; 4 stations intermittent.    |
|                 | HPCN  | 72 of 73 stations reported.                             |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAMS  | 34 of 35 stations reported; 12 stations intermittent.   |
|                 | PROFS | 22 of 22 stations reported.                             |
|                 | SAO   | 391 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 12 of 13 stations reported.                             |


**NOTES:**


**WEATHER SUMMARY****13 March 1992**

Another Alberta "clipper" (almost exactly like the one on 11 March), will be the weather maker for the next 24-h, as it moves to north of Kansas City and then east southeast rather quickly. It was expected that this would develop a narrow band of precipitation of perhaps an inch or so of snow to the north and east, with lighter snow around the band. A strong jet oriented north northwest—south southeast in the vicinity of Kansas City is expected to continue through Saturday (14 March). Over the next 24-h only slightly cooler air was expected to move south in response to the surface low pressure circulation.

Over the next 24- to 48-h another rather strong shortwave was expected to rotate around the eastern Canada upper level low and be near Kansas City by 1200 UTC Sunday, 15 March. A fairly strong surface high should move south behind this shortwave with sub-540 thickness contours south of Kansas City on Sunday. This front should continue to move south toward northern Texas on 16 March.

FRIDAY, MARCH 13, 1992





## **OPERATIONS SUMMARY**

**13 March 1992**

With the strong jet moving out of Canada, it was decided to operate the Canadian 6-h supplemental sounding sites beginning at 0000 UTC (13 March), for 48 hrs through 0000 UTC, 15 March, to document the evolution of the upper-level jet.

Locally, with the very strong likelihood of no storms or significant precipitation in the STORM-FEST area for at least the next 2- to 3-days, it was decided to end special observations for STORM-FEST, effective at 2140 UTC. Thus, the end of the field phase of STORM-FEST.

The ER-2 performed one more flight to coordinate with the HIS and Seneca CLASS measurements during 14 March.

## STORM-FEST HOURLY COLLECTION OF DATA

Date: 13 March  
 Julian Day: 73

Time (UTC)

| DATA TYPE | SOURCE                | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 |    |
|-----------|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| IOP       |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| UPPER AIR | CLASS                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NWS (Inner)           | 22 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 22 |
|           | NWS(Outer)            | 11 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 11 |
|           | Picket Fence          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Canadian              | 9  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 9  |
|           | Fl. Sill              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Flatlands             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Seneca                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | HIS                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | BL Profiler (RASS) <  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 5  |
|           | BL Profiler (Winds) < |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 5  |
| RADAR     | CP-3                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CP-4                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Mile High             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | CHILL                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | HOT                   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Cimarron              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KOUN                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KFDR                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | KOKC                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | St. Louis             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | Grand Island          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| AIRCRAFT  | NOAA P-3              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NCAR KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | UWYO KA               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | UW C-131              |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NASA ER-2             |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| SATELLITE | GOES RISOP            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|           | NOAA                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

### Comments

|                 |       |                                                         |
|-----------------|-------|---------------------------------------------------------|
| SURFACE SYSTEMS | ASOS  | 39 of 42 stations reported; 6 station intermittent.     |
|                 | AWOS  | 47 of 47 stations reported; 2 stations intermittent.    |
|                 | HPCN  | 72 of 73 stations reported; 1 station intermittent.     |
|                 | ISWS  | 19 of 19 stations reported.                             |
|                 | PAMS  | 35 of 35 stations reported; 10 stations intermittent.   |
|                 | PROFS | 22 of 22 stations reported.                             |
|                 | SAO   | 389 of 410 stations reported; 65 stations intermittent. |
|                 | WDPN  | 13 of 13 stations reported; 1 station intermittent.     |

**NOTES:**

---

**U.S. Weather Research Program**  
**STORM-FEST Operations Summary and Data Inventory**

## **Appendix A**

## Appendix A: Station Locations

| Lat/Lon (dec. deg.)                 | Id  | Station Name       | St | Frequency | Elev (m) |
|-------------------------------------|-----|--------------------|----|-----------|----------|
| <b>Wind Profiler, NOAA Demo Net</b> |     |                    |    |           |          |
| 33.01667/-100.98000                 | JTN | Jayton             | TX | 6 minute  | 707.00   |
| 34.08972/- 88.86444                 | OKO | Okolona            | MS | 6 minute  | 125.00   |
| 34.11111/- 94.29056                 | DQU | DeQueen            | AR | 6 minute  | 195.00   |
| 34.97972/- 97.51862                 | PRC | Purcell            | OK | 6 minute  | 331.00   |
| 35.08000/-103.61000                 | TCU | Tucumcari          | NM | 6 minute  | 1241.00  |
| 35.80778/- 95.78167                 | HKL | Haskell            | OK | 6 minute  | 212.00   |
| 36.07195/- 99.21750                 | VCI | Vici               | OK | 6 minute  | 648.00   |
| 36.69111/- 97.48250                 | LMN | Lamont             | OK | 6 minute  | 306.00   |
| 36.88389/- 89.97195                 | BLM | Bloomfield         | MO | 6 minute  | 130.00   |
| 37.38000/- 95.63472                 | NDS | Neodesha           | KS | 6 minute  | 255.00   |
| 37.52334/- 92.70250                 | CNW | Conway             | MO | 6 minute  | 390.00   |
| 37.65223/- 99.09111                 | HVL | Haviland           | KS | 6 minute  | 648.00   |
| 37.77167/-102.17833                 | GDA | Granada            | CO | 6 minute  | 1155.00  |
| 38.30917/- 97.29556                 | HBR | Hillsboro          | KS | 6 minute  | 447.00   |
| 38.96000/- 94.57000                 | NRC | Kansas City        | MO | 6 minute  | 244.00   |
| 39.58000/- 94.18667                 | LTH | Lathrop            | MI | 6 minute  | 297.00   |
| 39.66000/- 90.48000                 | WNC | Winchester         | IL | 6 minute  | 170.00   |
| 40.08583/-100.65361                 | RWD | McCook             | NE | 6 minute  | 800.00   |
| 40.10000/- 97.34000                 | FBY | Fairbury           | NE | 6 minute  | 433.00   |
| 40.18000/-104.71944                 | PLT | Platteville        | CO | 6 minute  | 1524.00  |
| 41.90083/- 93.69917                 | SLA | Slater             | IA | 6 minute  | 315.00   |
| 42.20722/- 97.79361                 | NLG | Neligh             | NE | 6 minute  | 524.00   |
| 42.90556/-101.69473                 | MRR | Merriman           | NE | 6 minute  | 991.00   |
| 43.22000/- 90.53000                 | BLR | BlueRiver          | WI | 6 minute  | 226.00   |
| 44.67167/- 95.44833                 | WDL | WoodLake           | MN | 6 minute  | 319.00   |
| <b>NWS Cooperative Observer</b>     |     |                    |    |           |          |
| 32.05000/- 89.55000                 | SEP | RALEIGH            | MS | 15 minute | 164.60   |
| 32.10000/- 91.71667                 |     | WINNSBORO, 5 SSE   | LA | 15 minute | 24.40    |
| 32.10000/- 89.05000                 |     | ROSEHILL, 4 SW     | MS | 15 minute | 153.90   |
| 32.13333/- 99.16667                 |     | CROSSPLAINS, 2     | TX | 15 minute | 545.60   |
| 32.13333/- 97.48333                 |     | KOPPERL, 5 NNE     | TX | 15 minute | 195.10   |
| 32.21667/- 98.18333                 |     | STEPHENVILLE, WSMO | TX | 15 minute | 401.70   |
| 32.23333/- 98.66667                 |     | GORMAN, 2 NNE      | TX | 15 minute | 420.60   |
| 32.23333/- 87.41667                 |     | ALBERTA            | AL | 15 minute | 53.30    |

STORM-FEST Operations Summary and Data Inventory

| Lat/Lon (dec. deg.) | Id  | Station Name                 | St | Frequency | Elev (m) |
|---------------------|-----|------------------------------|----|-----------|----------|
| 32.26667/-101.48333 |     | BIGSPRING, FIELDSTN          | TX | 15 minute | 755.90   |
| 32.26667/- 96.63333 |     | BARDWELL, DAM                | TX | 15 minute | 140.50   |
| 32.30000/- 90.86667 |     | VICKSBURG, WATERWAYS EXPST   | MS | 15 minute | 54.90    |
| 32.30000/- 86.40000 | MGM | MONTGOMERY, DANNELLY FIELD   | AL | 15 minute | 67.10    |
| 32.31667/-102.53333 |     | ANDREWS                      | TX | 15 minute | 966.80   |
| 32.31667/- 97.01667 |     | MAYPEARL                     | TX | 15 minute | 161.50   |
| 32.31667/- 90.08333 | JAN | JACKSON, THOMPSON FIELD      | MS | 15 minute | 104.90   |
| 32.31667/- 89.75000 |     | PELAHATCHIE, 3E              | MS | 15 minute | 118.90   |
| 32.31667/- 89.48333 |     | FOREST, 3 S                  | MS | 15 minute | 146.30   |
| 32.33333/-100.91667 |     | LAKE COLORADO CITY           | TX | 15 minute | 640.10   |
| 32.33333/- 88.75000 | MEI | MERIDIAN, KEYFIELD           | MS | 15 minute | 90.80    |
| 32.35000/- 96.11667 |     | MABANK, 4 SW                 | TX | 15 minute | 109.70   |
| 32.35000/- 94.65000 |     | LONGVIEW, WSMO               | TX | 15 minute | 124.10   |
| 32.38333/-103.80000 |     | WASTE ISOLTN PILOT PLT       | NM | 15 minute | 1041.80  |
| 32.40000/- 98.85000 |     | EASTLAND                     | TX | 15 minute | 445.00   |
| 32.41667/-104.23333 |     | CARLSBAD                     | NM | 15 minute | 951.00   |
| 32.41667/- 99.68333 | ABI | ABILENE, MUNICIPAL ARPT      | TX | 15 minute | 541.90   |
| 32.41667/- 93.63333 |     | REDRIVER, RESEARCH STN       | LA | 15 minute | 47.20    |
| 32.45000/- 95.41667 |     | SWAN, 4 NW                   | TX | 15 minute | 137.20   |
| 32.45000/- 89.40000 |     | CONAHATTA, 1 NE              | MS | 15 minute | 158.50   |
| 32.46667/- 93.81667 | SHV | SHREVEPORT, WSO AP           | LA | 15 minute | 78.00    |
| 32.48333/- 97.00000 |     | MIDLOTHIAN, 2                | TX | 15 minute | 219.50   |
| 32.51667/- 96.66667 |     | FERRIS                       | TX | 15 minute | 143.30   |
| 32.51667/- 92.33333 |     | CALHOUN, RESEARCH STN        | LA | 15 minute | 54.90    |
| 32.53333/- 97.61667 |     | CRESSON                      | TX | 15 minute | 320.00   |
| 32.53333/- 92.06667 |     | MONROE, NLU                  | LA | 15 minute | 21.30    |
| 32.55000/- 97.31667 |     | BURLESON                     | TX | 15 minute | 222.50   |
| 32.58333/- 93.28333 |     | MINDEN                       | LA | 15 minute | 56.40    |
| 32.65000/-103.38333 |     | PEARL                        | NM | 15 minute | 1158.20  |
| 32.65000/- 97.45000 |     | BENBROOK, DAM                | TX | 15 minute | 240.80   |
| 32.70000/- 87.26667 |     | MARION, 7 NE                 | AL | 15 minute | 52.40    |
| 32.73333/- 94.98333 |     | GILMER, 2 W                  | TX | 15 minute | 118.90   |
| 32.75000/- 97.33333 |     | FORT WORTH, FEDERAL BUILDING | TX | 15 minute | 187.80   |
| 32.76667/-104.38333 |     | ARTESIA, 6 S                 | NM | 15 minute | 1011.90  |
| 32.76667/- 97.81667 |     | WEATHERFORD                  | TX | 15 minute | 324.60   |
| 32.78333/- 98.11667 |     | MINERAL WELLS, 1 SSW         | TX | 15 minute | 257.60   |
| 32.78333/- 88.66667 |     | DE KALB                      | MS | 15 minute | 141.70   |
| 32.78333/- 87.83333 |     | WARRIOR, LOCKAND DAM         | AL | 15 minute | 33.50    |
| 32.80000/-105.56667 |     | SACRAMENTO, # 2              | NM | 15 minute | 2301.20  |
| 32.80000/- 89.33333 |     | EDINBURG                     | MS | 15 minute | 114.90   |
| 32.81667/-104.73333 |     | HOPE                         | NM | 15 minute | 1249.70  |
| 32.81667/-103.70000 |     | MALJAMAR, 4 SE               | NM | 15 minute | 1219.20  |
| 32.81667/- 97.35000 | FTW | FORT WORTH, MEACHAM FIELD    | TX | 15 minute | 204.20   |
| 32.81667/- 92.16667 |     | MARION, 7 SE                 | LA | 15 minute | 46.00    |
| 32.85000/- 96.85000 | DAL | DALLAS, LOVE FIELD           | TX | 15 minute | 147.80   |
| 32.88333/-105.95000 |     | ALAMOGORDO                   | NM | 15 minute | 1325.90  |
| 32.88333/- 86.70000 |     | THORSBY, EXP STATION         | AL | 15 minute | 207.30   |
| 32.90000/- 97.68333 |     | SPRINGTOWN, 4 S              | TX | 15 minute | 321.00   |

| Lat/Lon (dec. deg.) | Id  | Station Name                      | St | Frequency | Elev (m) |
|---------------------|-----|-----------------------------------|----|-----------|----------|
| 32.90000/- 97.03333 | DFW | DALLAS/FT WORTH, Regional Airport | TX | 15 minute | 181.70   |
| 32.90000/- 90.88333 |     | ROLLING FORK                      | MS | 15 minute | 32.00    |
| 32.90000/- 90.38333 |     | YAZOO CITY, 5 NNE                 | MS | 15 minute | 32.60    |
| 32.93333/- 99.78333 |     | STAMFORD, 1                       | TX | 15 minute | 499.90   |
| 32.93333/- 94.96667 |     | PITTSBURG, 5 S                    | TX | 15 minute | 106.70   |
| 32.95000/- 97.56667 |     | RENO                              | TX | 15 minute | 234.70   |
| 32.96667/-101.81667 |     | O DONNELL                         | TX | 15 minute | 928.40   |
| 32.96667/- 97.05000 |     | GRAPEVINE, DAM                    | TX | 15 minute | 178.30   |
| 32.98333/- 89.38333 |     | KOSCIUSKO, 13 SE                  | MS | 15 minute | 128.00   |
| 33.01667/- 99.05000 |     | WOODSON                           | TX | 15 minute | 385.00   |
| 33.01667/- 89.05000 |     | NOXAPATER, 1N                     | MS | 15 minute | 134.10   |
| 33.03333/- 96.48333 |     | LAVON, DAM                        | TX | 15 minute | 155.50   |
| 33.06667/- 97.01667 |     | LEWISVILLE, DAM                   | TX | 15 minute | 169.50   |
| 33.08333/- 97.30000 |     | JUSTIN                            | TX | 15 minute | 195.10   |
| 33.10000/- 88.53333 |     | MACON, 2 E                        | MS | 15 minute | 51.80    |
| 33.11667/- 89.46667 |     | ETHEL                             | MS | 15 minute | 128.00   |
| 33.13333/- 90.06667 |     | LEXINGTON, 2 NNW                  | MS | 15 minute | 96.00    |
| 33.13333/- 89.06667 |     | LOUISVILLE                        | MS | 15 minute | 177.10   |
| 33.15000/- 96.83333 |     | FRISCO                            | TX | 15 minute | 205.70   |
| 33.15000/- 95.63333 |     | SULPHUR SPRINGS                   | TX | 15 minute | 150.90   |
| 33.17000/- 95.00000 |     | MOUNT PLEASANT                    | TX | 15 minute | 129.50   |
| 33.18333/-102.83333 |     | PLAINS                            | TX | 15 minute | 1121.70  |
| 33.20000/- 97.10000 |     | DENTON, 2 SE                      | TX | 15 minute | 192.00   |
| 33.21667/- 97.83333 |     | LAKE BRIDGEPORT, DAM              | TX | 15 minute | 265.20   |
| 33.23333/- 98.15000 |     | JACKSBORO, 1 NNE                  | TX | 15 minute | 310.90   |
| 33.25000/-100.56667 |     | JAYTON                            | TX | 15 minute | 612.70   |
| 33.26667/- 95.90000 |     | COMMERCE                          | TX | 15 minute | 169.20   |
| 33.30000/-104.53333 | ROW | ROSWELL, INDUSTRIAL AIR PARK      | NM | 15 minute | 1117.70  |
| 33.30000/- 94.16667 |     | WRIGHT PATMAN, DAM & LAKE         | TX | 15 minute | 86.00    |
| 33.30000/- 92.48333 |     | CALION, LOCK & DAM                | AR | 15 minute | 30.50    |
| 33.32000/- 93.23000 |     | MAGNOLIA, 3 N                     | AR | 15 minute | 97.50    |
| 33.35000/-105.66667 |     | RUIDOSO, 2                        | NM | 15 minute | 2114.40  |
| 33.35000/- 96.53333 |     | ANNA                              | TX | 15 minute | 207.30   |
| 33.36667/- 93.56667 |     | LEWISVILLE                        | AR | 15 minute | 103.60   |
| 33.38000/- 97.65000 |     | ALVORD, 4 NE                      | TX | 15 minute | 315.50   |
| 33.38333/-105.26667 |     | HONDO, 1 SE                       | NM | 15 minute | 1606.30  |
| 33.41667/- 94.08333 |     | TEXARKANA                         | TX | 15 minute | 118.90   |
| 33.43333/- 90.91667 |     | STONEVILLE, EXP STN               | MS | 15 minute | 38.70    |
| 33.45000/-105.73333 |     | BONITO, DAM                       | NM | 15 minute | 2218.90  |
| 33.45000/- 94.41667 |     | NEW BOSTON                        | TX | 15 minute | 105.20   |
| 33.46667/- 88.78333 |     | STATE UNIVERSITY                  | MS | 15 minute | 56.40    |
| 33.51667/-103.33333 |     | CROSSROADS                        | NM | 15 minute | 1264.90  |
| 33.51667/- 95.31667 |     | DEPORT                            | TX | 15 minute | 129.50   |
| 33.51667/- 90.18333 |     | GREENWOOD, 2                      | MS | 15 minute | 40.80    |
| 33.55000/-105.56667 |     | CAPITAN                           | NM | 15 minute | 1970.50  |
| 33.55000/- 89.23333 |     | EUPORA, 2 E                       | MS | 15 minute | 134.10   |
| 33.56667/- 86.75000 | BHM | BIRMINGHAM, MUNICIPAL ARPT        | AL | 15 minute | 196.00   |

## STORM-FEST Operations Summary and Data Inventory

| Lat/Lon (dec. deg.) | Id  | Station Name                  | St | Frequency | Elev (m) |
|---------------------|-----|-------------------------------|----|-----------|----------|
| 33.58333/-100.03333 |     | BENJAMIN, 15 W                | TX | 15 minute | 502.90   |
| 33.58333/- 95.90000 |     | HONEY GROVE                   | TX | 15 minute | 207.30   |
| 33.60000/-100.53333 |     | PITCHFORK RANCH               | TX | 15 minute | 592.80   |
| 33.60000/- 99.38333 |     | RED SPRINGS, 2 ESE            | TX | 15 minute | 416.70   |
| 33.60000/- 92.81667 |     | CAMDEN, 1                     | AR | 15 minute | 35.40    |
| 33.60000/- 91.80000 |     | MONTICELLO, 3 SW              | AR | 15 minute | 88.40    |
| 33.61667/- 95.06667 |     | CLARKSVILLE, 1 W              | TX | 15 minute | 129.80   |
| 33.61667/- 87.61667 |     | BERRY, 3 S                    | AL | 15 minute | 129.50   |
| 33.63333/-105.88333 | Q37 | CARRIZOZO, 1 SW               | NM | 15 minute | 1647.40  |
| 33.63333/- 97.13333 |     | GAINESVILLE                   | TX | 15 minute | 237.70   |
| 33.65000/-101.81667 | LBB | LUBBOCK, REGIONAL ARPT        | TX | 15 minute | 996.10   |
| 33.68333/- 93.96667 |     | MILLWOOD, DAM                 | AR | 15 minute | 96.30    |
| 33.70000/-101.83333 |     | LUBBOCK, 9 N                  | TX | 15 minute | 989.10   |
| 33.73333/- 95.91667 |     | LAKE CROCKETT                 | TX | 15 minute | 161.50   |
| 33.73333/- 94.40000 |     | FOREMAN                       | AR | 15 minute | 121.90   |
| 33.75000/- 99.15000 |     | LAKE KEMP                     | TX | 15 minute | 355.70   |
| 33.76667/- 99.83333 |     | TRUSCOTT, 2 NW                | TX | 15 minute | 460.30   |
| 33.76667/- 97.60000 |     | BONITA                        | TX | 15 minute | 298.10   |
| 33.80000/-100.51667 |     | DUMONT                        | TX | 15 minute | 612.70   |
| 33.80000/- 96.85000 |     | GORDONVILLE                   | TX | 15 minute | 228.60   |
| 33.80000/- 93.38333 |     | PRESCOTT                      | AR | 15 minute | 93.90    |
| 33.80000/- 90.71667 |     | CLEVELAND, 3 N                | MS | 15 minute | 42.70    |
| 33.80000/- 89.76667 |     | GRENADA, DAM                  | MS | 15 minute | 85.30    |
| 33.80000/- 88.11667 |     | VERNON, 2 N                   | AL | 15 minute | 80.80    |
| 33.81667/-102.56667 |     | PEP                           | TX | 15 minute | 1115.60  |
| 33.81667/- 96.56667 |     | DENISON, DAM                  | TX | 15 minute | 186.80   |
| 33.81667/- 86.80000 |     | WARRIOR, 2                    | AL | 15 minute | 198.10   |
| 33.83333/- 88.51667 |     | ABERDEEN                      | MS | 15 minute | 64.60    |
| 33.86667/- 95.51667 |     | PAT MAYSE, DAM                | TX | 15 minute | 150.90   |
| 33.88333/- 91.48333 |     | DUMAS                         | AR | 15 minute | 48.80    |
| 33.90000/-105.00000 |     | CIRCLE F, RANCH               | NM | 15 minute | 1645.90  |
| 33.91667/- 89.33333 |     | CALHOUN CITY, 2 NW            | MS | 15 minute | 86.60    |
| 33.92000/- 89.00000 |     | HOUSTON                       | MS | 15 minute | 82.30    |
| 33.95000/- 93.86667 |     | NASHVILLE                     | AR | 15 minute | 125.00   |
| 33.96667/- 98.48333 | SPS | WICHITA FALLS, MUNICIPAL ARPT | TX | 15 minute | 309.10   |
| 34.00000/- 95.51667 |     | HUGO                          | OK | 15 minute | 173.70   |
| 34.00000/- 95.40000 |     | HUGO, DAM                     | OK | 15 minute | 142.00   |
| 34.01667/-100.83333 |     | MATADOR                       | TX | 15 minute | 698.00   |
| 34.01667/- 96.71667 |     | KINGSTON                      | OK | 15 minute | 251.50   |
| 34.03333/- 93.41667 |     | ANTOINE                       | AR | 15 minute | 86.90    |
| 34.05000/- 86.76667 |     | HANCEVILLE                    | AL | 15 minute | 161.50   |
| 34.10000/- 94.38333 |     | DE QUEEN, DAM                 | AR | 15 minute | 169.80   |
| 34.10000/- 87.98333 |     | HAMILTON, 3 S                 | AL | 15 minute | 132.60   |
| 34.11667/- 94.23333 |     | GILLHAM, DAM                  | AR | 15 minute | 158.50   |
| 34.13333/- 94.70000 |     | BROKEN BOW, DAM               | OK | 15 minute | 135.00   |
| 34.13333/- 89.28333 |     | SAREPTA, 1 NNE                | MS | 15 minute | 115.20   |
| 34.15000/-105.00000 |     | RAMON, 8 SW                   | NM | 15 minute | 1623.70  |
| 34.15000/- 97.15000 |     | ARDMORE, # 2                  | OK | 15 minute | 259.10   |

| Lat/Lon (dec. deg.) | Id  | Station Name                       | St | Frequency | Elev (m) |
|---------------------|-----|------------------------------------|----|-----------|----------|
| 34.15000/- 94.10000 |     | DIERKS, DAM                        | AR | 15 minute | 209.10   |
| 34.15000/- 93.71667 |     | NARROWS, DAM                       | AR | 15 minute | 132.60   |
| 34.15000/- 93.05000 |     | ARKADELPHIA, 2 N                   | AR | 15 minute | 59.70    |
| 34.15000/- 89.91667 |     | ENID, DAM                          | MS | 15 minute | 91.40    |
| 34.20000/- 90.56667 |     | CLARKSDALE                         | MS | 15 minute | 52.70    |
| 34.21667/-102.73333 |     | MULESHOE, 2                        | TX | 15 minute | 1158.20  |
| 34.21667/- 92.01667 |     | PINE BLUFF                         | AR | 15 minute | 65.50    |
| 34.21667/- 87.16667 |     | ADDISON                            | AL | 15 minute | 240.50   |
| 34.21667/- 86.16667 |     | BOAZ                               | AL | 15 minute | 326.10   |
| 34.23333/- 96.21667 |     | CANEY                              | OK | 15 minute | 176.80   |
| 34.23333/- 95.08333 |     | PINE CREEK, DAM                    | OK | 15 minute | 149.40   |
| 34.25000/- 95.63333 |     | ANTLERS                            | OK | 15 minute | 158.50   |
| 34.25000/- 94.78333 |     | CARTER, TOWER                      | OK | 15 minute | 396.20   |
| 34.25000/- 87.58333 |     | HALEYVILLE, 2 ENE                  | AL | 15 minute | 297.20   |
| 34.26667/- 88.76667 | TUP | TUPELO, C D LEMONS ARPT            | MS | 15 minute | 110.00   |
| 34.36667/-101.75000 |     | KRESS                              | TX | 15 minute | 1060.70  |
| 34.38333/- 89.53333 |     | UNIVERSITY                         | MS | 15 minute | 115.80   |
| 34.40000/- 89.80000 |     | SARDIS, DAM                        | MS | 15 minute | 70.10    |
| 34.41667/-105.88333 |     | PROGRESSO                          | NM | 15 minute | 1919.30  |
| 34.41667/-103.20000 |     | CLOVIS                             | NM | 15 minute | 1307.60  |
| 34.43333/-100.28333 | CDS | CHILDRESS, FCWOS AP                | TX | 15 minute | 594.70   |
| 34.46667/-105.40000 |     | DURAN                              | NM | 15 minute | 1914.10  |
| 34.46667/- 96.21667 |     | LEHIGH                             | OK | 15 minute | 195.10   |
| 34.46667/- 91.41667 |     | STUTTGART, 9 ESE                   | AR | 15 minute | 60.40    |
| 34.48333/- 97.96667 |     | DUNCAN, AIRPORT                    | OK | 15 minute | 342.90   |
| 34.51667/- 97.36667 |     | HENNEPIN, 1 WNW                    | OK | 15 minute | 284.40   |
| 34.53333/- 93.60000 |     | MOUNT IDA, 3 SE                    | AR | 15 minute | 212.50   |
| 34.56667/- 94.26667 |     | MENA                               | AR | 15 minute | 344.40   |
| 34.56667/- 93.20000 |     | BLAKELY MOUNTAIN, DAM              | AR | 15 minute | 129.80   |
| 34.58333/- 99.33333 |     | ALTUS, IRIG RES STATION            | OK | 15 minute | 420.60   |
| 34.60000/-104.38333 |     | SUMNER, LAKE                       | NM | 15 minute | 1312.50  |
| 34.60000/-103.21667 |     | CLOVIS, 13 N                       | NM | 15 minute | 1351.80  |
| 34.61667/- 95.28333 |     | TUSKAHOMA                          | OK | 15 minute | 182.90   |
| 34.61667/- 89.18333 |     | HICKORY FLAT                       | MS | 15 minute | 121.90   |
| 34.63333/- 96.88333 |     | ROFF, 2 WNW                        | OK | 15 minute | 382.50   |
| 34.65000/- 86.76667 | HSV | HUNTSVILLE, Madison County JETPLEX | AL | 15 minute | 190.80   |
| 34.66667/- 88.56667 |     | BOONEVILLE                         | MS | 15 minute | 149.40   |
| 34.73333/- 98.71667 |     | WICHITA, MTN WL REF                | OK | 15 minute | 507.50   |
| 34.73333/- 88.95000 |     | RIPLEY                             | MS | 15 minute | 158.50   |
| 34.75000/- 90.13333 |     | ARKABUTLA, DAM                     | MS | 15 minute | 73.20    |
| 34.76667/- 92.45000 |     | FERNDALE, 6 E                      | AR | 15 minute | 150.00   |
| 34.76667/- 86.95000 |     | ATHENS                             | AL | 15 minute | 207.30   |
| 34.80000/-101.55000 |     | WAYSIDE                            | TX | 15 minute | 1036.30  |
| 34.80000/- 92.86667 |     | ALUM FORK                          | AR | 15 minute | 237.70   |
| 34.81667/-102.40000 |     | HEREFORD                           | TX | 15 minute | 1164.30  |
| 34.81667/- 97.26667 |     | PAOLI, 2 W                         | OK | 15 minute | 283.80   |
| 34.81667/- 89.43333 |     | HOLLYSPRINGS, 4 N                  | MS | 15 minute | 147.20   |

STORM-FEST Operations Summary and Data Inventory

| Lat/Lon (dec. deg.) | Id  | Station Name               | St | Frequency | Elev (m) |
|---------------------|-----|----------------------------|----|-----------|----------|
| 34.83333/-100.21667 |     | WELLINGTON                 | TX | 15 minute | 621.80   |
| 34.83333/- 92.26667 | 1M1 | NORTHLITTLEROCK,ARPT       | AR | 15 minute | 171.60   |
| 34.85000/- 95.08333 |     | BENGAL, 2 NW               | OK | 15 minute | 202.70   |
| 34.86667/- 89.68333 |     | BYHALIA                    | MS | 15 minute | 97.50    |
| 34.88333/- 95.78333 | MLC | MCALESTER, MUNICIPAL AP    | OK | 15 minute | 231.70   |
| 34.88333/- 91.18333 |     | BRINKLEY                   | AR | 15 minute | 61.00    |
| 34.90000/- 94.10000 |     | WALDRON                    | AR | 15 minute | 205.70   |
| 34.91667/- 88.51667 |     | CORINTH, CITY              | MS | 15 minute | 117.40   |
| 34.93333/- 94.71667 |     | WISTER, DAM                | OK | 15 minute | 151.80   |
| 34.93333/- 93.50000 |     | BRIGGSVILLE                | AR | 15 minute | 140.20   |
| 34.95000/- 93.16667 |     | NIMROD, DAM                | AR | 15 minute | 146.30   |
| 35.01667/- 99.08333 |     | HOBART                     | OK | 15 minute | 489.20   |
| 35.05000/- 97.91667 |     | CHICKASHA, EXPERIMENT STN  | OK | 15 minute | 330.70   |
| 35.05000/- 90.00000 | MEM | MEMPHIS, WSCMO AP          | TN | 15 minute | 100.90   |
| 35.06667/- 91.90000 |     | BEEBE                      | AR | 15 minute | 76.20    |
| 35.08333/- 96.68333 |     | WOLF                       | OK | 15 minute | 210.30   |
| 35.10000/- 98.43333 |     | FORT COBB                  | OK | 15 minute | 382.50   |
| 35.10000/- 93.91667 |     | BOONEVILLE, 3 SSE          | AR | 15 minute | 213.40   |
| 35.10000/- 93.65000 |     | BLUE MOUNTAIN, DAM         | AR | 15 minute | 129.80   |
| 35.15000/- 88.31667 |     | SAVANNAH, 6 SW             | TN | 15 minute | 128.00   |
| 35.16667/-105.96667 |     | STANLEY, 1 NNE             | NM | 15 minute | 1944.60  |
| 35.18333/-105.06667 |     | DILIA                      | NM | 15 minute | 1585.00  |
| 35.20000/-103.68333 |     | TUCUMCARI, 4 NE            | NM | 15 minute | 1245.40  |
| 35.23333/-101.70000 | AMA | AMARILLO, INT'L ARPT       | TX | 15 minute | 1098.80  |
| 35.23333/-100.60000 |     | MC LEAN                    | TX | 15 minute | 871.70   |
| 35.25000/- 95.12000 |     | STIGLER, 1 SE              | OK | 15 minute | 173.70   |
| 35.25000/- 90.80000 |     | WYNNE                      | AR | 15 minute | 79.30    |
| 35.25000/- 87.35000 |     | LAWRENCEBURG, FILTER PLANT | TN | 15 minute | 265.20   |
| 35.26667/- 88.98333 |     | BOLIVAR, WATERWORKS        | TN | 15 minute | 138.70   |
| 35.30000/- 95.36667 |     | LAKE EUFAULA               | OK | 15 minute | 221.30   |
| 35.30000/- 91.38333 |     | AUGUSTA, 2 NW              | AR | 15 minute | 59.40    |
| 35.33333/- 99.86667 |     | MAYFIELD                   | OK | 15 minute | 611.10   |
| 35.33333/- 94.78333 |     | ROBERT S KERR, DAM         | OK | 15 minute | 150.30   |
| 35.33333/- 94.36667 | FSM | FORT SMITH, MUNICIPAL ARPT | AR | 15 minute | 143.00   |
| 35.38333/- 99.40000 |     | ELK CITY                   | OK | 15 minute | 600.50   |
| 35.40000/-104.18333 |     | CONCHAS, DAM               | NM | 15 minute | 1293.60  |
| 35.40000/- 97.60000 | OKC | OKLAHOMA CITY, WSFO AP     | OK | 15 minute | 390.80   |
| 35.40000/- 89.53333 |     | MASON                      | TN | 15 minute | 97.20    |
| 35.43333/- 96.30000 |     | OKEMAH                     | OK | 15 minute | 285.00   |
| 35.45000/- 89.80000 |     | MUNFORD                    | TN | 15 minute | 136.60   |
| 35.45000/- 86.80000 |     | LEWISBURG, EXP STN         | TN | 15 minute | 239.90   |
| 35.48333/- 97.66667 |     | LAKE OVERHOLSER            | OK | 15 minute | 387.10   |
| 35.51667/- 92.00000 |     | GREERS FERRY, DAM          | AR | 15 minute | 160.60   |
| 35.53333/-105.20000 |     | LAS VEGAS, SEWAGE PLANT    | NM | 15 minute | 1935.20  |
| 35.53333/- 93.40000 |     | CLARKSVILLE, 6 NE          | AR | 15 minute | 259.10   |
| 35.55000/- 95.16667 |     | WEBBERS FALLS, DAM         | OK | 15 minute | 158.50   |
| 35.56667/-100.96667 |     | PAMPA, 2                   | TX | 15 minute | 960.10   |
| 35.58333/- 89.26667 |     | BROWNSVILLE, SEWAGE PLANT  | TN | 15 minute | 108.20   |

| Lat/Lon (dec. deg.) | Id  | Station Name             | St | Frequency | Elev (m) |
|---------------------|-----|--------------------------|----|-----------|----------|
| 35.60000/- 95.05000 |     | TENKILLER FERRY, DAM     | OK | 15 minute | 234.70   |
| 35.61667/-105.98333 |     | SANTA FE, 2              | NM | 15 minute | 2047.70  |
| 35.61667/- 88.83333 |     | JACKSON, EXP STN         | TN | 15 minute | 121.90   |
| 35.63333/-100.40000 |     | GAGEBY, 3 WNW            | TX | 15 minute | 853.40   |
| 35.63333/- 98.31667 |     | GEARY                    | OK | 15 minute | 486.20   |
| 35.66667/- 98.88333 |     | CUSTER CITY              | OK | 15 minute | 542.50   |
| 35.66667/- 88.41667 |     | LEXINGTON                | TN | 15 minute | 164.60   |
| 35.68333/-102.33333 |     | CHANNING                 | TX | 15 minute | 1158.20  |
| 35.70000/- 96.88333 |     | CHANDLER, 1              | OK | 15 minute | 290.50   |
| 35.71667/- 97.98333 |     | OKARCHE                  | OK | 15 minute | 379.50   |
| 35.71667/- 92.46667 |     | BOTKINBURG, 3 NE         | AR | 15 minute | 394.70   |
| 35.75000/- 99.83333 |     | MACKIE, 4 NNW            | OK | 15 minute | 655.30   |
| 35.75000/- 91.63000 |     | BATESVILLE, L&D 1        | AR | 15 minute | 84.40    |
| 35.75000/- 87.45000 |     | CENTERVILLE, WATER PLANT | TN | 15 minute | 201.20   |
| 35.76667/- 95.33333 |     | MUSKOGEE                 | OK | 15 minute | 177.70   |
| 35.81667/- 91.78333 |     | BATESVILLE, LIVESTOCK    | AR | 15 minute | 174.00   |
| 35.83333/-101.45000 |     | STINNETT                 | TX | 15 minute | 954.00   |
| 35.83333/- 93.75000 |     | ST PAUL, 1 E             | AR | 15 minute | 481.60   |
| 35.85000/- 95.36667 |     | OKAY 3 W, LOCK 17        | OK | 15 minute | 158.50   |
| 35.86667/- 95.23333 |     | FORT GIBSON, DAM         | OK | 15 minute | 161.90   |
| 35.90000/- 91.08333 |     | ALICIA                   | AR | 15 minute | 78.00    |
| 35.91667/- 86.36667 |     | MURFREESBORO, 5 N        | TN | 15 minute | 167.60   |
| 35.95000/-104.20000 |     | ROY                      | NM | 15 minute | 1791.60  |
| 35.95000/- 96.28333 |     | HEYBURN, DAM             | OK | 15 minute | 253.30   |
| 35.95000/- 93.25000 |     | PARTHENON                | AR | 15 minute | 274.30   |
| 35.98333/- 92.71667 |     | GILBERT                  | AR | 15 minute | 189.00   |
| 36.03333/- 98.96667 |     | TALOGA                   | OK | 15 minute | 519.70   |
| 36.03333/- 89.38333 |     | DYERSBURG, 2             | TN | 15 minute | 85.00    |
| 36.05000/- 90.11667 |     | HORNERSVILLE             | MO | 15 minute | 76.20    |
| 36.06667/- 96.56667 |     | OILTON, 2 SE             | OK | 15 minute | 268.20   |
| 36.06667/- 95.55000 |     | INOLA, 6 SSW             | OK | 15 minute | 166.10   |
| 36.06667/- 93.75000 |     | HUNTSVILLE, 1 SSW        | AR | 15 minute | 543.50   |
| 36.06667/- 87.38333 |     | DICKSON                  | TN | 15 minute | 237.70   |
| 36.08333/- 93.30000 |     | COMPTON                  | AR | 15 minute | 660.20   |
| 36.08333/- 87.86667 |     | WAVERLY, 4 W             | TN | 15 minute | 134.10   |
| 36.10000/- 94.16667 |     | FAYETTEVILLE, EXP STN    | AR | 15 minute | 387.10   |
| 36.11667/- 97.10000 |     | STILLWATER, 2 W          | OK | 15 minute | 272.80   |
| 36.11667/- 86.68333 | BNA | NASHVILLE, METRO ARPT    | TN | 15 minute | 182.00   |
| 36.15000/- 97.61667 |     | MARSHALL                 | OK | 15 minute | 318.50   |
| 36.15000/- 96.25000 | HRL | KEYSTONE, DAM            | OK | 15 minute | 214.90   |
| 36.16667/- 95.01667 |     | ROSE, TOWER              | OK | 15 minute | 381.00   |
| 36.16667/- 88.78333 |     | GREENFIELD               | TN | 15 minute | 121.90   |
| 36.18333/-105.05000 |     | OCATE, 1 N               | NM | 15 minute | 2336.30  |
| 36.20000/- 95.90000 | TUL | TULSA, WSO AP            | OK | 15 minute | 206.00   |
| 36.21667/- 86.33333 |     | LEBANON, 3 W             | TN | 15 minute | 163.10   |
| 36.23333/-100.26667 |     | LIPSCOMB                 | TX | 15 minute | 746.80   |
| 36.25000/- 98.18333 |     | AMES                     | OK | 15 minute | 369.70   |

STORM-FEST Operations Summary and Data Inventory

| Lat/Lon (dec. deg.) | Id  | Station Name                | St | Frequency | Elev (m) |
|---------------------|-----|-----------------------------|----|-----------|----------|
| 36.25000/- 92.25000 | CAO | NORFORK, DAM                | AR | 15 minute | 129.50   |
| 36.28333/- 99.86667 |     | SHATTUCK, 1 N               | OK | 15 minute | 672.10   |
| 36.28333/- 96.55000 |     | CLEVELAND, 5 WSW            | OK | 15 minute | 271.30   |
| 36.31667/- 91.48333 |     | HARDY, 2 SW                 | AR | 15 minute | 115.80   |
| 36.31667/- 87.21667 |     | CHEATHAM, LOCK AND DAM      | TN | 15 minute | 119.50   |
| 36.36667/-105.30000 |     | ANGEL FIRE, 2 S             | NM | 15 minute | 2631.00  |
| 36.36667/-104.58333 |     | SPRINGER                    | NM | 15 minute | 1805.00  |
| 36.36667/- 92.56667 |     | BULL SHOALS, DAM            | AR | 15 minute | 146.30   |
| 36.36667/- 91.83333 |     | SALEM                       | AR | 15 minute | 213.40   |
| 36.40000/- 96.81667 |     | PAWNEE, 5 N                 | OK | 15 minute | 304.80   |
| 36.40000/- 95.30000 |     | PRYOR, 6 N                  | OK | 15 minute | 195.10   |
| 36.40000/- 90.58333 |     | CORNING                     | AR | 15 minute | 91.40    |
| 36.40000/- 89.05000 |     | UNION CITY                  | TN | 15 minute | 106.70   |
| 36.41667/- 93.78333 |     | EUREKA SPRINGS, 3 WNW       | AR | 15 minute | 432.80   |
| 36.43333/- 95.68333 |     | OOLOGAH, DAM                | OK | 15 minute | 208.20   |
| 36.43333/- 93.61667 |     | BERRYVILLE, 5 NW            | AR | 15 minute | 359.70   |
| 36.45000/-103.15000 |     | CLAYTON, MUNICIPAL AIR PARK | NM | 15 minute | 1514.60  |
| 36.45000/- 89.31667 |     | SAMBURG, WILD LIFE REFUGE   | TN | 15 minute | 94.50    |
| 36.46667/- 86.83333 |     | SPRINGFIELD, EXP STN        | TN | 15 minute | 227.10   |
| 36.55000/-105.26667 |     | EAGLE NEST                  | NM | 15 minute | 2517.70  |
| 36.55000/-101.08333 |     | RANGE                       | OK | 15 minute | 826.00   |
| 36.55000/- 99.58333 |     | FORT SUPPLY, DAM            | OK | 15 minute | 632.50   |
| 36.56667/- 96.16667 |     | BARNSDALL                   | OK | 15 minute | 234.70   |
| 36.58333/- 98.86667 |     | WAYNOKA                     | OK | 15 minute | 457.20   |
| 36.58333/- 86.53333 |     | PORTLAND, SEWAGE PLANT      | TN | 15 minute | 242.00   |
| 36.60000/-101.61667 |     | GOODWELL, RESEARCH STN      | OK | 15 minute | 1008.90  |
| 36.60000/- 93.31667 |     | TABLE ROCK, DAM             | MO | 15 minute | 249.90   |
| 36.60000/- 89.98333 |     | MALDEN, MUNICIPAL AP        | MO | 15 minute | 88.40    |
| 36.61667/- 88.96667 |     | CLINTON, 4 S                | KY | 15 minute | 106.70   |
| 36.65000/-101.13333 |     | OPTIMA, LAKE                | OK | 15 minute | 863.80   |
| 36.66667/- 96.35000 |     | PAWHUSKA                    | OK | 15 minute | 254.50   |
| 36.66667/- 93.11667 |     | OZARK, BEACH                | MO | 15 minute | 213.40   |
| 36.68333/- 93.86667 |     | CASSVILLE, RANGER STN       | MO | 15 minute | 408.40   |
| 36.70000/- 95.63333 |     | NOWATA                      | OK | 15 minute | 221.00   |
| 36.72000/- 87.62000 |     | HERNDON, 3 SW               | KY | 15 minute | 167.60   |
| 36.73333/-102.48333 |     | BOISE CITY, 2 E             | OK | 15 minute | 1263.40  |
| 36.73333/- 97.10000 | PNC | TONAWANDA, 3 SSW            | OK | 15 minute | 304.50   |
| 36.73333/- 91.83333 |     | TONAWANDA, 3 SSW            | MO | 15 minute | 307.90   |
| 36.73333/- 86.21667 |     | SCOTTSVILLE, 3 SSW          | KY | 15 minute | 259.10   |
| 36.75000/- 98.13333 |     | GREAT SALT PLAINS, DAM      | OK | 15 minute | 365.80   |
| 36.76667/- 92.25000 |     | DORA                        | MO | 15 minute | 301.80   |
| 36.78333/-100.41667 |     | RIVERSIDE, 4 W              | OK | 15 minute | 746.80   |
| 36.80000/-101.90000 |     | EVA                         | OK | 15 minute | 1089.40  |
| 36.80000/- 92.57000 |     | WASOLA                      | MO | 15 minute | 393.20   |
| 36.85000/- 94.61667 |     | SENECA                      | MO | 15 minute | 256.00   |
| 36.85000/- 88.33000 |     | BENTON                      | KY | 15 minute | 111.30   |
| 36.91667/-104.43333 |     | RATON, FILTER PLANT         | NM | 15 minute | 2112.90  |
| 36.91667/- 96.10000 |     | HULAH, DAM                  | OK | 15 minute | 226.80   |

| Lat/Lon (dec. deg.) | Id  | Station Name                | St | Frequency | Elev (m) |
|---------------------|-----|-----------------------------|----|-----------|----------|
| 36.93333/- 90.28333 |     | WAPPAPELLO, DAM             | MO | 15 minute | 125.00   |
| 36.98333/- 94.53333 |     | SPRING CITY                 | MO | 15 minute | 338.30   |
| 37.00000/-101.88333 | 1KS | ELKHART, AMOS               | KS | 15 minute | 1105.80  |
| 37.01667/- 98.48333 |     | KIOWA                       | KS | 15 minute | 408.40   |
| 37.05000/-100.00000 |     | ENGLEWOOD, 1 NW             | KS | 15 minute | 600.50   |
| 37.05000/- 97.61667 |     | CALDWELL                    | KS | 15 minute | 344.40   |
| 37.06667/- 88.76667 | PUK | PADUCAH, BARKLEY FIELD      | KY | 15 minute | 125.00   |
| 37.08333/-105.05000 |     | TERCIO, 4 NW                | CO | 15 minute | 2520.70  |
| 37.08333/- 89.90000 |     | ADVANCE, 1 S                | MO | 15 minute | 109.70   |
| 37.10000/- 88.60000 |     | PADUCAH, SEWAGE PLANT       | KY | 15 minute | 99.10    |
| 37.11667/- 90.78333 |     | CLEARWATER, DAM             | MO | 15 minute | 201.20   |
| 37.12000/- 87.87000 |     | PRINCETON, 1 SE             | KY | 15 minute | 151.50   |
| 37.15000/-104.55000 |     | TRINIDAD, LAKE              | CO | 15 minute | 1865.40  |
| 37.15000/- 92.26667 |     | MOUNTAIN GROVE, 2 N         | MO | 15 minute | 442.00   |
| 37.15000/- 91.45000 |     | ALLEY SPRING, RGR STN       | MO | 15 minute | 213.40   |
| 37.16667/-104.48333 |     | TRINIDAD                    | CO | 15 minute | 1837.90  |
| 37.16667/- 94.85000 |     | COLUMBUS, 1 SW              | KS | 15 minute | 274.30   |
| 37.16667/- 88.43333 |     | SMITHLAND, LOCK & DAM       | IL | 15 minute | 108.80   |
| 37.18333/- 95.45000 |     | MOUND VALLEY, 3 WSW         | KS | 15 minute | 243.80   |
| 37.18333/- 86.63333 |     | WOODBURY                    | KY | 15 minute | 141.70   |
| 37.20000/-105.41667 |     | SAN LUIS                    | CO | 15 minute | 2435.70  |
| 37.21667/- 93.81667 |     | MILLER, 1 E                 | MO | 15 minute | 399.30   |
| 37.23333/- 93.38333 | SGF | SPRINGFIELD, REGIONAL AP    | MO | 15 minute | 385.90   |
| 37.28333/- 95.80000 |     | ELK CITY, LAKE              | KS | 15 minute | 242.30   |
| 37.33333/- 92.90000 |     | MARSHFIELD                  | MO | 15 minute | 454.20   |
| 37.35000/- 87.51667 |     | MADISONVILLE                | KY | 15 minute | 134.10   |
| 37.36667/- 96.45000 |     | GRENOLA, 1 N                | KS | 15 minute | 352.00   |
| 37.36667/- 90.35000 |     | JEWETT, 7 E                 | MO | 15 minute | 189.00   |
| 37.38333/-102.73333 |     | SPRINGFIELD, 7 WSW          | CO | 15 minute | 1396.00  |
| 37.38333/- 93.95000 |     | LOCKWOOD                    | MO | 15 minute | 329.20   |
| 37.40000/- 98.96667 |     | SUN CITY, 2 NW              | KS | 15 minute | 512.10   |
| 37.43333/- 88.66667 |     | DIXON SPRINGS, AGR CENTER   | IL | 15 minute | 164.60   |
| 37.45000/-105.87000 | ALS | ALAMOSA, BERGMAN FIELD      | CO | 15 minute | 2295.10  |
| 37.45000/-103.31667 |     | KIM, 15 NNE                 | CO | 15 minute | 1569.70  |
| 37.48333/-100.85000 |     | SUBLETTE                    | KS | 15 minute | 890.00   |
| 37.53333/- 87.26667 |     | CALHOUN, LOCK 2             | KY | 15 minute | 122.50   |
| 37.55000/-101.63333 |     | BIG BOW, 4 WSW              | KS | 15 minute | 984.50   |
| 37.55000/- 91.90000 |     | ICKING, 4 N                 | MO | 15 minute | 359.70   |
| 37.55000/- 86.76667 |     | DUNDEE                      | KY | 15 minute | 128.00   |
| 37.60000/- 93.41667 |     | BOLIVAR, 1 NE               | MO | 15 minute | 329.20   |
| 37.61667/- 86.76667 |     | FORDSVILLE                  | KY | 15 minute | 146.30   |
| 37.63333/-104.78333 |     | WALSENBURG                  | CO | 15 minute | 1874.50  |
| 37.63333/- 91.53333 |     | SALEM                       | MO | 15 minute | 365.80   |
| 37.65000/- 97.43333 | ICT | WICHITA, MID-CONTINENT ARPT | KS | 15 minute | 402.60   |
| 37.65000/- 96.53333 |     | BEAUMONT                    | KS | 15 minute | 481.60   |
| 37.65000/- 96.08333 |     | FALL RIVER, LAKE            | KS | 15 minute | 310.90   |
| 37.67000/- 92.65000 |     | LEBANON, 2 W                | MO | 15 minute | 389.80   |

STORM-FEST Operations Summary and Data Inventory

| Lat/Lon (dec. deg.) | Id  | Station Name                    | St | Frequency | Elev (m) |
|---------------------|-----|---------------------------------|----|-----------|----------|
| 37.68000/- 90.73000 |     | BELLEVIEW                       | MO | 15 minute | 317.00   |
| 37.70000/- 93.78000 |     | STOCKTON, DAM                   | MO | 15 minute | 281.60   |
| 37.71667/-105.23333 |     | SHEEP MOUNTAIN                  | CO | 15 minute | 2363.40  |
| 37.71667/- 91.13333 |     | VIBURNUM                        | MO | 15 minute | 388.90   |
| 37.71667/- 86.21667 |     | CUSTER, 4 SE                    | KY | 15 minute | 237.70   |
| 37.73333/- 89.36667 |     | MURPHYSBORO, 2 SW               | IL | 15 minute | 167.60   |
| 37.75000/- 95.93333 |     | TORONTO, LAKE                   | KS | 15 minute | 292.90   |
| 37.76667/- 99.96667 | DDC | DODGE CITY, MUNICIPAL AP        | KS | 15 minute | 787.00   |
| 37.76667/- 87.15000 |     | OWENSBORO, 3 W                  | KY | 15 minute | 123.40   |
| 37.78333/- 90.40000 |     | FARMINGTON                      | MO | 15 minute | 285.00   |
| 37.80000/- 87.98333 |     | UNIONTOWN, LOCK & DAM           | IN | 15 minute | 103.60   |
| 37.81667/- 88.45000 |     | ELDORADO                        | IL | 15 minute | 115.80   |
| 37.85000/- 94.96667 |     | UNIONTOWN                       | KS | 15 minute | 289.60   |
| 37.85000/- 94.40000 |     | NEVADA, SEWAGE PLANT            | MO | 15 minute | 225.60   |
| 37.86667/-104.11667 |     | WHITE ROCK                      | CO | 15 minute | 1441.70  |
| 37.90000/- 98.18333 |     | ARLINGTON                       | KS | 15 minute | 493.80   |
| 37.90000/- 86.63333 |     | CANNELTON                       | IN | 15 minute | 122.50   |
| 37.91667/- 95.43333 |     | IOLA, 1 W                       | KS | 15 minute | 290.80   |
| 37.92000/- 93.32000 |     | POMME DE TERRE, DAM             | MO | 15 minute | 274.30   |
| 37.93333/-104.93333 |     | RYE, SCHOOL                     | CO | 15 minute | 2055.90  |
| 37.93333/- 87.36667 |     | NEWBURGH, LOCK & DAM            | IN | 15 minute | 115.80   |
| 37.95000/- 91.76667 |     | ROLLA, UNI OF MISSOURI          | MO | 15 minute | 359.70   |
| 37.96667/- 97.55000 |     | HALSTEAD, 3 SW                  | KS | 15 minute | 431.00   |
| 37.98333/-100.81667 |     | GARDEN CITY, EXPERIMENT STN     | KS | 15 minute | 874.20   |
| 37.98333/- 89.95000 |     | KASKASKIA, R NAV LOCK           | IL | 15 minute | 115.80   |
| 38.00000/- 91.36667 |     | STEELVILLE, 2 N                 | MO | 15 minute | 213.40   |
| 38.03333/- 88.98333 |     | REN DLAKE, DAM                  | IL | 15 minute | 138.70   |
| 38.05000/- 96.63333 |     | CASSODAY                        | KS | 15 minute | 445.00   |
| 38.05000/- 93.70000 |     | OSCEOLA                         | MO | 15 minute | 233.50   |
| 38.05000/- 87.53333 | EVV | EVANSVILLE, DRESS Regional Arpt | IN | 15 minute | 127.10   |
| 38.06667/-102.91667 |     | JOHN MARTIN, DAM                | CO | 15 minute | 1162.50  |
| 38.06667/-102.31667 |     | GRANADA                         | CO | 15 minute | 1061.60  |
| 38.06667/- 88.18333 |     | CARMI, 3                        | IL | 15 minute | 102.10   |
| 38.08333/- 90.11667 |     | PRAIRIE DUROCHER, 1 WSW         | IL | 15 minute | 117.40   |
| 38.10000/-103.50000 |     | CHERAW, 1 N                     | CO | 15 minute | 1262.20  |
| 38.10000/- 95.01667 |     | BLUE MOUND                      | KS | 15 minute | 336.80   |
| 38.16667/- 89.70000 |     | SPARTA, 3 N                     | IL | 15 minute | 158.50   |
| 38.18333/- 91.13333 |     | SULLIVAN, 3 SE                  | MO | 15 minute | 231.70   |
| 38.18333/- 86.26667 |     | HARRISON, CRAWFORD State Forest | IN | 15 minute | 259.10   |
| 38.20000/- 94.03333 |     | APPLETON CITY                   | MO | 15 minute | 243.80   |
| 38.20000/- 92.61667 |     | LAKESIDE                        | MO | 15 minute | 180.40   |
| 38.20000/- 91.98333 |     | VIENNA, 2 WNW                   | MO | 15 minute | 234.70   |
| 38.21667/- 86.11667 |     | CORYDON                         | IN | 15 minute | 179.80   |
| 38.25000/- 95.75000 |     | JOHN REDMOND, LAKE              | KS | 15 minute | 332.50   |
| 38.25000/- 93.36667 |     | TRUMAN, DAM & RESERVIOR         | MO | 15 minute | 192.60   |
| 38.26667/- 99.75000 |     | BAZINE, 13 SSW                  | KS | 15 minute | 665.70   |
| 38.28333/-104.51667 | PUB | PUEBLO, MEMORIAL AP             | CO | 15 minute | 1439.30  |
| 38.28333/- 87.25000 |     | SPURGEON, 2 N                   | IN | 15 minute | 134.10   |

| Lat/Lon (dec. deg.) | Id  | Station Name                   | St | Frequency | Elev (m) |
|---------------------|-----|--------------------------------|----|-----------|----------|
| 38.33333/- 89.18333 |     | ASHLEY                         | IL | 15 minute | 169.20   |
| 38.35000/- 87.58333 |     | PRINCETON, 1 W                 | IN | 15 minute | 146.30   |
| 38.38333/- 97.08333 |     | MARION, LAKE                   | KS | 15 minute | 417.30   |
| 38.38333/- 91.40000 |     | ROSEBUD                        | MO | 15 minute | 274.30   |
| 38.38333/- 86.93333 |     | JASPER                         | IN | 15 minute | 140.20   |
| 38.40000/- 93.77000 |     | CLINTON                        | MO | 15 minute | 234.70   |
| 38.40000/- 87.75000 |     | MOUNT CARMEL                   | IL | 15 minute | 131.10   |
| 38.40000/- 86.11667 |     | PALMYRA                        | IN | 15 minute | 234.70   |
| 38.45000/- 86.70000 |     | DUBOIS, S IND FORAGE FRM       | IN | 15 minute | 210.30   |
| 38.46667/-101.76667 |     | TRIBUNE, 1 W                   | KS | 15 minute | 1108.30  |
| 38.48333/- 94.60000 |     | DREXEL                         | MO | 15 minute | 301.80   |
| 38.48333/- 92.58333 |     | HIGH POINT                     | MO | 15 minute | 277.40   |
| 38.50000/- 95.70000 |     | MELVERN, LAKE                  | KS | 15 minute | 333.20   |
| 38.50000/- 90.28333 |     | JEFFERSON BARRACKS             | MO | 15 minute | 149.40   |
| 38.50000/- 89.85000 |     | BELLEVILLE, SIU RESEARCH       | IL | 15 minute | 137.20   |
| 38.51667/-103.70000 |     | ORDWAY, 2 1N                   | CO | 15 minute | 1452.70  |
| 38.51667/- 88.40000 |     | CISNE, 2 ESE                   | IL | 15 minute | 138.40   |
| 38.51667/- 88.00000 |     | WEST SALEM                     | IL | 15 minute | 135.60   |
| 38.55000/- 91.00000 |     | WASHINGTON                     | MO | 15 minute | 152.40   |
| 38.58333/- 92.18333 |     | JEFFERSON CITY                 | MO | 15 minute | 158.50   |
| 38.60000/-100.61667 |     | HEALY                          | KS | 15 minute | 868.70   |
| 38.60000/- 97.95000 |     | KANOPOLIS, LAKE                | KS | 15 minute | 454.80   |
| 38.61667/- 95.28333 |     | OTTAWA                         | KS | 15 minute | 274.30   |
| 38.63333/- 90.20000 |     | ST LOUIS, SCIENCE CENTER       | MO | 15 minute | 164.60   |
| 38.65000/- 98.95000 |     | GALATIA, 1 NW                  | KS | 15 minute | 609.60   |
| 38.65000/- 95.56667 |     | POMONA, LAKE                   | KS | 15 minute | 324.00   |
| 38.66667/- 94.90000 |     | HILLSDALE, LAKE                | KS | 15 minute | 307.90   |
| 38.66667/- 86.80000 |     | SHOALS, HIWAY 50 BRIDGE        | IN | 15 minute | 167.60   |
| 38.68333/-104.70000 |     | FOUNTAIN                       | CO | 15 minute | 1696.20  |
| 38.68333/- 96.51667 |     | COUNCIL GROVE, LAKE            | KS | 15 minute | 402.30   |
| 38.68333/- 88.56667 |     | FLORA, 5 NW                    | IL | 15 minute | 152.40   |
| 38.73333/- 87.68333 |     | LAWRENCEVILLE                  | IL | 15 minute | 134.70   |
| 38.75000/- 90.36667 | STL | ST LOUIS, LAMBERT INT'L ARPT   | MO | 15 minute | 174.00   |
| 38.78333/- 93.75000 |     | WARRENSBURG, 2 NW              | MO | 15 minute | 217.60   |
| 38.80000/- 97.65000 | SLN | SALINA, FAA AIRPORT            | KS | 15 minute | 384.40   |
| 38.81667/-104.71667 | COS | COLORADO SPRINGS, MUNICIPAL AP | CO | 15 minute | 1881.20  |
| 38.81667/- 94.66667 |     | STANLEY, 3 S                   | KS | 15 minute | 320.00   |
| 38.81667/- 92.21667 | COU | COLUMBIA, REGIONAL ARPT        | MO | 15 minute | 271.00   |
| 38.81667/- 90.86667 |     | WENTZVILLE                     | MO | 15 minute | 176.80   |
| 38.85000/-104.93333 |     | MANITOU SPRINGS                | CO | 15 minute | 2020.80  |
| 38.85000/-104.26667 |     | YODER, 2 WNW                   | CO | 15 minute | 1883.70  |
| 38.85000/-102.16667 |     | ARAPAHOE                       | CO | 15 minute | 1225.30  |
| 38.85000/- 91.95000 |     | FULTON                         | MO | 15 minute | 265.20   |
| 38.86667/- 99.33333 |     | HAYS, 1 S                      | KS | 15 minute | 612.70   |
| 38.86667/- 94.03333 |     | ELM                            | MO | 15 minute | 259.10   |
| 38.86667/- 87.30000 |     | FREELANDVILLE                  | IN | 15 minute | 167.60   |
| 38.88333/-105.28333 |     | FLORISSANT FOSSIL BED          | CO | 15 minute | 2572.50  |

STORM-FEST Operations Summary and Data Inventory

| Lat/Lon (dec. deg.) | Id  | Station Name                 | St | Frequency | Elev (m) |
|---------------------|-----|------------------------------|----|-----------|----------|
| 38.88333/-101.58333 |     | WALLACE, 2 S                 | KS | 15 minute | 993.70   |
| 38.88333/- 86.55000 |     | OOLITIC, PURDUE EXP FARM     | IN | 15 minute | 198.10   |
| 38.90000/-100.11667 |     | COLLYER, 10 S                | KS | 15 minute | 733.70   |
| 38.91667/-105.48333 |     | LAKE GEORGE, 8 SW            | CO | 15 minute | 2596.90  |
| 38.91667/- 88.11667 |     | NEWTON, 6 SSE                | IL | 15 minute | 155.50   |
| 38.93333/- 95.33333 |     | CLINTON, LAKE                | KS | 15 minute | 298.40   |
| 38.95000/- 94.40000 |     | UNITY VILLAGE                | MO | 15 minute | 286.50   |
| 38.95000/- 91.90000 |     | MC CREDIE, EXPERIMENT STN    | MO | 15 minute | 259.10   |
| 38.96667/- 98.48333 |     | WILSON, LAKE                 | KS | 15 minute | 460.90   |
| 38.96667/- 89.06667 |     | VANDALIA                     | IL | 15 minute | 164.60   |
| 38.98333/- 94.71667 |     | SHAWNEE, 2 S                 | KS | 15 minute | 323.10   |
| 39.00000/-105.88333 |     | ANTERO, RESERVOIR            | CO | 15 minute | 2718.80  |
| 39.00000/- 90.70000 |     | CAP AU GRIS, LOCK AND DAM 25 | MO | 15 minute | 137.20   |
| 39.01667/- 92.76667 |     | NEW FRANKLIN, 1 W            | MO | 15 minute | 195.40   |
| 39.06667/- 95.63333 | TOP | TOPEKA, MUNICIPAL ARPT       | KS | 15 minute | 267.90   |
| 39.06667/- 94.88333 |     | BONNER SPRINGS               | KS | 15 minute | 253.00   |
| 39.08333/- 96.88333 |     | MILFORD, LAKE                | KS | 15 minute | 368.80   |
| 39.10000/-105.08333 |     | WOODLAND PARK, 8 NNW         | CO | 15 minute | 2365.30  |
| 39.10000/-104.73333 |     | GREENLAND, 9 SE              | CO | 15 minute | 2279.90  |
| 39.11667/- 95.41667 |     | PERRY, LAKE                  | KS | 15 minute | 292.60   |
| 39.11667/- 91.40000 |     | MIDDLETOWN                   | MO | 15 minute | 207.30   |
| 39.12000/- 93.22000 |     | MARSHALL                     | MO | 15 minute | 240.80   |
| 39.13333/-103.46667 |     | HUGO                         | CO | 15 minute | 1532.80  |
| 39.13333/- 88.53333 |     | EFFINGHAM                    | IL | 15 minute | 181.40   |
| 39.13333/- 87.66667 |     | HUTSONVILLE, POWER PLANT     | IL | 15 minute | 138.70   |
| 39.15000/-104.08333 |     | SIMLA                        | CO | 15 minute | 1822.70  |
| 39.16667/- 87.18333 |     | JASONVILLE, 1 E              | IN | 15 minute | 187.50   |
| 39.18333/-103.70000 | LIC | LIMON                        | CO | 15 minute | 1694.10  |
| 39.18333/- 94.58333 |     | GLADSTONE                    | MO | 15 minute | 283.50   |
| 39.21667/-104.73333 |     | GREENLAND, 6 NE              | CO | 15 minute | 2103.10  |
| 39.25000/-105.23000 |     | DECKERS                      | CO | 15 minute | 1980.90  |
| 39.25000/- 96.60000 |     | TUTTLE CREEK, LAKE           | KS | 15 minute | 322.20   |
| 39.25000/- 92.50000 |     | HIGBEE, 4 S                  | MO | 15 minute | 257.60   |
| 39.28333/- 93.96667 |     | RICHMOND                     | MO | 15 minute | 246.90   |
| 39.28333/- 89.88333 |     | CARLINVILLE, 2               | IL | 15 minute | 189.30   |
| 39.30000/-102.86667 |     | SEIBERT                      | CO | 15 minute | 1433.50  |
| 39.30000/- 89.26667 |     | NOKOMIS                      | IL | 15 minute | 207.30   |
| 39.31667/- 96.21667 |     | ONAGA, 12 SSW                | KS | 15 minute | 320.00   |
| 39.31667/- 94.71667 | MCI | KANSAS CITY, INTL ARPT       | MO | 15 minute | 311.80   |
| 39.35000/-100.03333 |     | MORLAND, 1 E                 | KS | 15 minute | 710.20   |
| 39.35000/- 95.45000 |     | VALLEY FALLS                 | KS | 15 minute | 283.50   |
| 39.35000/- 90.21667 |     | GREENFIELD                   | IL | 15 minute | 170.70   |
| 39.35000/- 88.16667 |     | DIONA, 3 SW                  | IL | 15 minute | 185.90   |
| 39.36667/-101.70000 | GLD | GOODLAND, RENNER FIELD       | KS | 15 minute | 1114.70  |
| 39.36667/- 99.83333 |     | HILL CITY, 1 E               | KS | 15 minute | 654.40   |
| 39.36667/- 94.33333 |     | KEARNEY, 2 E                 | MO | 15 minute | 246.90   |
| 39.36667/- 90.90000 |     | CLARKSVILLE, LOCK AND DAM 24 | MO | 15 minute | 140.20   |
| 39.38333/-101.06667 |     | COLBY, 1 SW                  | KS | 15 minute | 966.20   |

| Lat/Lon (dec. deg.) | Id  | Station Name               | St | Frequency | Elev (m) |
|---------------------|-----|----------------------------|----|-----------|----------|
| 39.38333/- 94.55000 |     | SMITHVILLE, LAKE           | MO | 15 minute | 275.50   |
| 39.40000/- 93.73000 |     | STET, 1 S                  | MO | 15 minute | 234.70   |
| 39.40000/- 92.43333 |     | MOBERLY                    | MO | 15 minute | 256.00   |
| 39.40000/- 88.78333 |     | SHELBYVILLE, DAM           | IL | 15 minute | 199.60   |
| 39.40000/- 86.45000 |     | MARTINSVILLE, 2 SW         | IN | 15 minute | 185.90   |
| 39.41667/- 89.46667 |     | MORRISONVILLE              | IL | 15 minute | 192.00   |
| 39.51667/- 88.63333 |     | SULLIVAN, 5 SSW            | IL | 15 minute | 195.10   |
| 39.51667/- 87.11667 |     | BRAZIL                     | IN | 15 minute | 207.30   |
| 39.53333/-104.65000 |     | PARKER, 6 E                | CO | 15 minute | 1923.30  |
| 39.55000/-103.35000 |     | SHAW, 2 E                  | CO | 15 minute | 1578.60  |
| 39.55000/- 97.65000 | CNK | CONCORDIA, BLOSSER MUNI AP | KS | 15 minute | 453.90   |
| 39.55000/- 86.10000 |     | NEW WHITELAND              | IN | 15 minute | 239.30   |
| 39.56667/-105.21667 |     | INTER CANYON               | CO | 15 minute | 2145.80  |
| 39.61667/- 90.80000 |     | PITTSFIELD, NO 2           | IL | 15 minute | 204.20   |
| 39.63333/-105.31667 |     | EVERGREEN                  | CO | 15 minute | 2133.60  |
| 39.63333/-102.65000 |     | JOES, 2 SE                 | CO | 15 minute | 1295.70  |
| 39.63333/-102.18333 |     | BONNY, LAKE                | CO | 15 minute | 1142.40  |
| 39.63333/- 87.70000 |     | PARIS, WATERWORKS          | IL | 15 minute | 207.30   |
| 39.63333/- 87.40000 |     | CLINTON, 1 S               | IN | 15 minute | 146.30   |
| 39.65000/-105.20000 |     | MORRISON                   | CO | 15 minute | 1761.70  |
| 39.65000/-104.85000 |     | CHERRY CREEK, DAM          | CO | 15 minute | 1721.20  |
| 39.66667/- 98.35000 |     | IONIA                      | KS | 15 minute | 481.60   |
| 39.66667/- 95.51667 |     | HORTON                     | KS | 15 minute | 313.90   |
| 39.68333/-100.96667 |     | ATWOOD, 10 SSE             | KS | 15 minute | 938.80   |
| 39.70000/-105.21667 |     | GOLDEN, 3 S                | CO | 15 minute | 2170.20  |
| 39.71667/- 91.36667 |     | HANNIBAL, WATER WORKS      | MO | 15 minute | 217.00   |
| 39.73000/- 92.48000 |     | LONG BRANCH, RESERVOIR     | MO | 15 minute | 256.30   |
| 39.73333/- 99.31667 |     | PHILLIPSBURG, 1 SSE        | KS | 15 minute | 581.30   |
| 39.73333/- 90.20000 |     | JACKSONVILLE, 2 E          | IL | 15 minute | 185.90   |
| 39.73333/- 86.26667 | IND | INDIANAPOLIS, INT'L ARPT   | IN | 15 minute | 241.40   |
| 39.75000/-104.13333 |     | BYERS, 5 ENE               | CO | 15 minute | 1554.50  |
| 39.75000/- 94.85000 |     | ST JOSEPH, CORPS OF ENGR   | MO | 15 minute | 237.70   |
| 39.76667/-105.63333 |     | LAWSON                     | CO | 15 minute | 2468.90  |
| 39.76667/-104.86667 | DEN | DENVER, STAPLETON INT'L AP | CO | 15 minute | 1625.50  |
| 39.76667/- 86.18333 |     | INDIANAPOLIS ZOO           | IN | 15 minute | 216.40   |
| 39.78333/- 95.05000 |     | TROY, 2 E                  | KS | 15 minute | 323.10   |
| 39.81667/-100.23333 |     | NORCATUR, 3 WSW            | KS | 15 minute | 774.20   |
| 39.81667/- 99.93333 |     | NORTON, DAM                | KS | 15 minute | 713.20   |
| 39.83333/- 96.63333 |     | MARYSVILLE                 | KS | 15 minute | 359.70   |
| 39.83333/- 89.01667 |     | DECATUR                    | IL | 15 minute | 189.00   |
| 39.85000/- 89.68333 |     | SPRINGFIELD, CAPITAL ARPT  | IL | 15 minute | 182.00   |
| 39.88333/- 87.03333 |     | WAVELAND, 2 NE             | IN | 15 minute | 239.30   |
| 39.90000/- 91.43333 |     | QUINCY, DAM 21             | IL | 15 minute | 147.20   |
| 39.96667/- 91.88333 |     | STEFFENVILLE               | MO | 15 minute | 210.30   |
| 39.96667/- 86.93333 |     | CRAWFORDSVILLE, 5 S        | IN | 15 minute | 227.10   |
| 39.97000/- 95.13000 |     | OREGON                     | MO | 15 minute | 318.50   |
| 40.00000/-104.08333 |     | HOYT                       | CO | 15 minute | 1524.00  |

STORM-FEST Operations Summary and Data Inventory

| Lat/Lon (dec. deg.) | Id  | Station Name              | St | Frequency | Elev (m) |
|---------------------|-----|---------------------------|----|-----------|----------|
| 40.03000/-105.58000 |     | SILVER LAKE               | CO | 15 minute | 3157.70  |
| 40.03333/-105.26667 |     | BOULDER, #2               | CO | 15 minute | 1650.50  |
| 40.03333/- 96.05000 |     | DUBOIS                    | NE | 15 minute | 327.70   |
| 40.03333/- 94.13333 |     | PATTONSBURG, 2 S          | MO | 15 minute | 251.50   |
| 40.05000/-101.53333 |     | BENKELMAN                 | NE | 15 minute | 922.00   |
| 40.06667/- 86.46667 |     | LEBANON, WATERWORKS       | IN | 15 minute | 289.60   |
| 40.08333/- 99.20000 |     | HARLAN COUNTY, LAKE       | NE | 15 minute | 609.60   |
| 40.10000/- 98.96667 |     | FRANKLIN, 2               | NE | 15 minute | 612.70   |
| 40.10000/- 88.23333 |     | URBANA                    | IL | 15 minute | 226.50   |
| 40.11667/-102.48333 |     | ECKLEY                    | CO | 15 minute | 1188.70  |
| 40.11667/- 95.75000 |     | DAWSON, 5 ESE             | NE | 15 minute | 339.90   |
| 40.13333/- 87.65000 |     | DANVILLE                  | IL | 15 minute | 170.10   |
| 40.15000/-103.15000 |     | AKRON, 4 E                | CO | 15 minute | 1383.80  |
| 40.16667/- 97.58333 |     | HEBRON                    | NE | 15 minute | 451.10   |
| 40.18333/-105.86667 |     | GRAND LAKE, 6 SSW         | CO | 15 minute | 2526.20  |
| 40.20000/-105.53333 |     | ALLENSPARK, LODGE         | CO | 15 minute | 2575.90  |
| 40.20000/- 94.55000 |     | STANBERRY                 | MO | 15 minute | 271.30   |
| 40.20000/- 89.73333 |     | MASON CITY, 1 W           | IL | 15 minute | 178.30   |
| 40.21667/-100.63333 |     | MC COOK, 2                | NE | 15 minute | 786.40   |
| 40.21667/- 92.58333 |     | KIRKSVILLE                | MO | 15 minute | 295.70   |
| 40.21667/- 86.11667 |     | TIPTON, 5 SW              | IN | 15 minute | 272.80   |
| 40.23333/- 90.93333 |     | AUGUSTA                   | IL | 15 minute | 207.30   |
| 40.25000/-105.15000 |     | LONGMONT, 6 NW            | CO | 15 minute | 1569.70  |
| 40.25000/- 88.65000 |     | FARMER CITY               | IL | 15 minute | 222.50   |
| 40.28333/- 99.78333 |     | EDISON                    | NE | 15 minute | 646.20   |
| 40.28333/- 95.08333 |     | SKIDMORE                  | MO | 15 minute | 286.50   |
| 40.28333/- 87.25000 |     | ATTICA                    | IN | 15 minute | 158.50   |
| 40.30000/- 96.75000 |     | BEATRICE, 1 N             | NE | 15 minute | 395.30   |
| 40.31667/- 88.16667 |     | RANTOUL                   | IL | 15 minute | 225.60   |
| 40.31667/- 86.50000 |     | FRANKFORT, DISPOSAL PLANT | IN | 15 minute | 254.50   |
| 40.38333/-105.51667 |     | ESTES PARK                | CO | 15 minute | 2293.00  |
| 40.38333/- 95.75000 |     | AUBURN, 5 ESE             | NE | 15 minute | 283.50   |
| 40.40000/- 91.36667 |     | KEOKUK, LOCK DAM 19       | IA | 15 minute | 160.60   |
| 40.41667/-104.70000 |     | GREELEY, UNC              | CO | 15 minute | 1437.10  |
| 40.42000/- 94.05000 |     | RIDGEWAY, 8 NW            | MO | 15 minute | 292.60   |
| 40.43333/-105.33333 |     | DRAKE                     | CO | 15 minute | 1880.60  |
| 40.45000/- 95.38333 |     | TARKIO                    | MO | 15 minute | 289.60   |
| 40.45000/- 91.88333 |     | LURAY                     | MO | 15 minute | 225.60   |
| 40.46667/- 87.66667 |     | HOOPERSTON, 1 NE          | IL | 15 minute | 216.40   |
| 40.46667/- 87.00000 |     | WEST LAFAYETTE, 6 NW      | IN | 15 minute | 214.90   |
| 40.48000/- 92.37000 |     | DOWNING                   | MO | 15 minute | 265.20   |
| 40.48333/- 94.41667 |     | GRANT CITY                | MO | 15 minute | 344.40   |
| 40.48333/- 86.40000 |     | BURLINGTON                | IN | 15 minute | 242.60   |
| 40.50000/- 90.38333 |     | MARIETTA                  | IL | 15 minute | 195.10   |
| 40.51667/-101.01667 |     | HAYES CENTER              | NE | 15 minute | 929.90   |
| 40.58333/-105.08333 | FCL | FORT COLLINS              | CO | 15 minute | 1525.20  |
| 40.58333/-102.30000 |     | HOLYOKE                   | CO | 15 minute | 1136.90  |
| 40.60000/-103.85000 |     | NEW RAYMER                | CO | 15 minute | 1457.90  |

| Lat/Lon (dec. deg.) | Id  | Station Name                | St | Frequency | Elev (m) |
|---------------------|-----|-----------------------------|----|-----------|----------|
| 40.61667/- 96.95000 | 3OI | CRETE                       | NE | 15 minute | 437.40   |
| 40.61667/- 95.65000 |     | HAMBURG, 2                  | IA | 15 minute | 274.30   |
| 40.62000/- 93.95000 |     | LAMONI                      | IA | 15 minute | 343.80   |
| 40.66667/-105.21667 |     | FORT COLLINS, 9 NW          | CO | 15 minute | 1591.10  |
| 40.66667/-100.50000 |     | CURTIS, 3 NNE               | NE | 15 minute | 829.40   |
| 40.66667/- 96.18333 | PIA | SYRACUSE                    | NE | 15 minute | 335.30   |
| 40.66667/- 89.68333 |     | PEORIA, GREATER PEORIA ARPT | IL | 15 minute | 200.90   |
| 40.66667/- 86.88333 |     | CHALMERS                    | IN | 15 minute | 213.40   |
| 40.68333/- 99.70000 |     | CANADAY, STEAM PLANT        | NE | 15 minute | 719.90   |
| 40.68333/- 94.30000 |     | MOUNT AYR, 4 SW             | IA | 15 minute | 378.00   |
| 40.68333/- 93.50000 | PIA | CLIO, 4 NW                  | IA | 15 minute | 329.20   |
| 40.70000/-105.80000 |     | RUSTIC, 12 WSW              | CO | 15 minute | 2462.80  |
| 40.70000/-104.78333 |     | NUNN                        | CO | 15 minute | 1583.70  |
| 40.70000/- 99.38333 |     | ELM CREEK, 1 SSW            | NE | 15 minute | 685.80   |
| 40.70000/- 89.41667 |     | WASHINGTON, 1 WSW           | IL | 15 minute | 222.50   |
| 40.71667/-105.71667 | PIA | RUSTIC, 9 WSW               | CO | 15 minute | 2347.30  |
| 40.71667/- 96.03333 |     | DUNBAR, 4 N                 | NE | 15 minute | 374.90   |
| 40.73333/- 98.85000 |     | GIBBON                      | NE | 15 minute | 627.90   |
| 40.73333/- 92.86667 |     | CENTERVILLE                 | IA | 15 minute | 298.70   |
| 40.73333/- 88.51667 |     | FAIRBURY, WATERWORKS        | IL | 15 minute | 210.30   |
| 40.75000/- 88.18333 | PIA | PIPER CITY                  | IL | 15 minute | 204.20   |
| 40.75000/- 86.05000 |     | PERU, WATERWORKS            | IN | 15 minute | 195.10   |
| 40.76667/- 87.45000 |     | KENTLAND                    | IN | 15 minute | 208.80   |
| 40.78333/- 90.01667 |     | YATES CITY                  | IL | 15 minute | 205.70   |
| 40.81667/- 91.16667 |     | BURLINGTON, RADIO KBUR      | IA | 15 minute | 214.30   |
| 40.83333/- 94.05000 | LNK | BEACONSFIELD, 2 N           | IA | 15 minute | 347.50   |
| 40.85000/- 96.75000 |     | LINCOLN, MUNICIPAL ARPT     | NE | 15 minute | 364.90   |
| 40.85000/- 86.50000 |     | ROYAL CENTER                | IN | 15 minute | 219.50   |
| 40.86667/- 97.60000 |     | K17                         | NE | 15 minute | 490.70   |
| 40.86667/- 96.15000 |     | YORK                        | NE | 15 minute | 335.30   |
| 40.88333/- 94.56667 | GRI | WEEPING WATER               | IA | 15 minute | 394.70   |
| 40.91667/- 90.63333 |     | LENOX                       | IL | 15 minute | 234.70   |
| 40.93333/- 93.45000 |     | MONMOUTH                    | IA | 15 minute | 362.70   |
| 40.93333/- 87.15000 |     | DERBY                       | IN | 15 minute | 198.10   |
| 40.95000/- 91.55000 |     | RENSSELAER                  | IN | 15 minute | 222.50   |
| 40.96667/- 98.31667 | OTM | MOUNT PLEASANT, 1 SSW       | IA | 15 minute | 563.00   |
| 41.03333/- 89.40000 |     | GRAND ISLAND, WSO AP        | NE | 15 minute | 140.20   |
| 41.06667/-102.08333 |     | LACON, 1 N                  | NE | 15 minute | 1027.20  |
| 41.06667/- 90.56667 |     | BIG SPRINGS                 | IL | 15 minute | 207.30   |
| 41.06667/- 86.21667 |     | ALEXIS, 1 SW                | IN | 15 minute | 234.70   |
| 41.08333/-106.00000 | LBF | ROCHESTER                   | WY | 15 minute | 2310.40  |
| 41.08333/- 95.06667 |     | JELM, 2 S                   | IA | 15 minute | 381.00   |
| 41.10000/- 92.45000 |     | WALLIN, 1 NW                | IA | 15 minute | 256.60   |
| 41.13333/-100.68333 |     | OTTUMWA, INDUSTRIAL AP      | NE | 15 minute | 846.70   |
| 41.13333/- 87.88333 |     | NORTH PLATTE, LEE BIRD FLD  | IL | 15 minute | 195.10   |
| 41.15000/-104.81667 | YS  | KANKAKEE, WATER POLL CTL    | WY | 15 minute | 1873.60  |
| 41.15000/- 96.20000 |     | CHEYENNE, WSFO AP           | NE | 15 minute | 365.80   |
|                     |     | GRETNNA, 4 NE               |    |           |          |

STORM-FEST Operations Summary and Data Inventory

| Lat/Lon (dec. deg.) | Id  | Station Name               | St | Frequency | Elev (m) |
|---------------------|-----|----------------------------|----|-----------|----------|
| 41.16667/-104.15000 | OVN | PINEBLUFFS, 5 W            | WY | 15 minute | 1578.90  |
| 41.16667/- 93.15000 |     | COLUMBIA                   | IA | 15 minute | 289.60   |
| 41.16667/- 86.90000 |     | MEDARYVILLE, STATE NURSERY | IN | 15 minute | 211.80   |
| 41.18333/- 87.33333 |     | SHELBY                     | IN | 15 minute | 195.10   |
| 41.22000/-101.65000 |     | KINGSLEY, DAM              | NE | 15 minute | 1011.30  |
| 41.23333/- 95.41667 |     | CARSON                     | IA | 15 minute | 353.90   |
| 41.25000/- 98.80000 |     | ASHTON                     | NE | 15 minute | 623.30   |
| 41.26667/- 97.11667 |     | DAVID CITY                 | NE | 15 minute | 490.70   |
| 41.26667/- 96.65000 |     | MALMO, 3 E                 | NE | 15 minute | 399.30   |
| 41.28333/- 93.80000 |     | ST CHARLES                 | IA | 15 minute | 323.10   |
| 41.28333/- 91.68333 |     | WASHINGTON                 | IA | 15 minute | 230.40   |
| 41.30000/-105.63333 |     | LARAMIE, 2 WSW             | WY | 15 minute | 2186.90  |
| 41.30000/- 94.46667 |     | GREENFIELD                 | IA | 15 minute | 408.40   |
| 41.33333/- 93.11667 |     | KNOXVILLE                  | IA | 15 minute | 280.40   |
| 41.35000/- 96.10000 |     | BENNINGTON, 3 E            | NE | 15 minute | 370.30   |
| 41.35000/- 88.43333 |     | GEBHARD WOODS, STATE PARK  | IL | 15 minute | 153.90   |
| 41.36667/- 96.01667 |     | OMAHA, WSFO                | NE | 15 minute | 399.00   |
| 41.40000/- 99.63333 |     | BROKEN BOW, 2              | NE | 15 minute | 752.90   |
| 41.41667/- 95.00000 |     | ATLANTIC, 1 NE             | IA | 15 minute | 365.80   |
| 41.41667/- 91.01667 |     | ILLINOIS CITY, DAM 16      | IL | 15 minute | 167.60   |
| 41.45000/- 97.76667 |     | GENOA, 2 W                 | NE | 15 minute | 484.60   |
| 41.45000/- 90.50000 |     | MOLINE, QUAD CITY ARPT     | IL | 15 minute | 179.80   |
| 41.45000/- 87.63333 |     | CRETE                      | IL | 15 minute | 202.40   |
| 41.50000/-102.25000 |     | OSHKOSH, 10 NE             | NE | 15 minute | 1074.40  |
| 41.50000/- 94.63333 |     | ADAIR                      | IA | 15 minute | 414.50   |
| 41.51667/- 95.45000 |     | SHELBY                     | IA | 15 minute | 414.50   |
| 41.51667/- 94.23333 |     | DEXTER                     | IA | 15 minute | 346.00   |
| 41.51667/- 92.06667 |     | NORTH ENGLISH              | IA | 15 minute | 242.90   |
| 41.51667/- 90.56667 |     | ROCK ISLAND, LOCK & DAM 15 | IL | 15 minute | 173.10   |
| 41.51667/- 87.03333 |     | VALPARAISO, WATERWORKS     | IN | 15 minute | 243.80   |
| 41.51667/- 86.26667 |     | LAKEVILLE                  | IN | 15 minute | 256.30   |
| 41.53333/- 93.65000 | DSM | DES MOINES, INTL AP        | IA | 15 minute | 292.00   |
| 41.56667/- 95.88333 |     | MISSOURI VALLEY, 1 NNE     | IA | 15 minute | 374.90   |
| 41.60000/- 99.83333 |     | ANSELMO, 2 SE              | NE | 15 minute | 789.40   |
| 41.60000/- 86.71667 |     | LA PORTE                   | IN | 15 minute | 246.90   |
| 41.63333/-104.48333 |     | PHILLIPS                   | WY | 15 minute | 1518.50  |
| 41.65000/- 96.21667 |     | HERMAN                     | NE | 15 minute | 320.00   |
| 41.65000/- 91.53333 |     | IOWA CITY                  | IA | 15 minute | 195.10   |
| 41.66667/-103.10000 |     | BRIDGEPORT                 | NE | 15 minute | 1117.40  |
| 41.66667/- 96.66667 |     | SCRIBNER                   | NE | 15 minute | 381.00   |
| 41.66667/- 89.95000 |     | PROPHETSTOWN               | IL | 15 minute | 185.90   |
| 41.68333/- 98.36667 | SBN | SPALDING                   | NE | 15 minute | 577.60   |
| 41.68333/- 98.13333 |     | ALBION, 7 W                | NE | 15 minute | 586.70   |
| 41.70000/- 86.31667 |     | SOUTHBEND, WSO AP          | IN | 15 minute | 239.00   |
| 41.71667/- 97.36667 |     | CRESTON                    | NE | 15 minute | 492.30   |
| 41.71667/- 92.73333 |     | GRINNELL, 3 SW             | IA | 15 minute | 275.80   |
| 41.73333/- 95.71667 |     | WOODBINE                   | IA | 15 minute | 332.20   |
| 41.73333/- 87.76667 |     | CHICAGO, MIDWAY AP 3 SW    | IL | 15 minute | 189.00   |

| Lat/Lon (dec. deg.) | Id  | Station Name               | St | Frequency | Elev (m) |
|---------------------|-----|----------------------------|----|-----------|----------|
| 41.76667/- 88.75000 |     | WATERMAN, 1 ESE            | IL | 15 minute | 240.80   |
| 41.78333/- 99.13333 |     | BURWELL                    | NE | 15 minute | 664.50   |
| 41.78333/- 95.20000 |     | IRWIN                      | IA | 15 minute | 399.30   |
| 41.78333/- 87.60000 |     | CHICAGO, UNIVERSITY        | IL | 15 minute | 181.10   |
| 41.85000/- 98.08333 |     | PETERSBURG                 | NE | 15 minute | 579.10   |
| 41.86667/-103.60000 | BFF | SCOTTSBLUFF, COUNTY ARPT   | NE | 15 minute | 1208.50  |
| 41.86667/- 94.66667 |     | COON RAPIDS                | IA | 15 minute | 361.20   |
| 41.86667/- 90.93333 |     | LOWDEN                     | IA | 15 minute | 217.90   |
| 41.88333/- 93.38333 |     | MAXWELL                    | IA | 15 minute | 266.70   |
| 41.90000/- 90.15000 |     | FULTON, LOCK & DAM #13     | IL | 15 minute | 180.40   |
| 41.95000/- 86.41667 |     | BERRIEN SPRINGS, 5 W       | MI | 15 minute | 229.20   |
| 41.98333/-100.58333 |     | THEDFORD                   | NE | 15 minute | 896.10   |
| 41.98333/- 97.43333 | OFK | NORFOLK, WSO AP            | NE | 15 minute | 478.80   |
| 41.98333/- 95.76667 |     | SOLDIER                    | IA | 15 minute | 342.90   |
| 42.00000/- 89.28333 |     | OREGON, 2E                 | IL | 15 minute | 228.60   |
| 42.00000/- 87.88333 | ORD | CHICAGO, O'HARE INTL AP    | IL | 15 minute | 204.20   |
| 42.01667/- 93.80000 |     | AMES, 8 WSW                | IA | 15 minute | 335.00   |
| 42.03333/- 94.03333 |     | OGDEN                      | IA | 15 minute | 335.30   |
| 42.06667/-102.58333 |     | ANTIOCH                    | NE | 15 minute | 1184.20  |
| 42.06667/-101.46667 |     | WHITMAN, 4 E               | NE | 15 minute | 1075.90  |
| 42.06667/- 92.93333 |     | MARSHALLTOWN               | IA | 15 minute | 265.20   |
| 42.08333/-104.21667 |     | TORRINGTON, EXP FARM       | WY | 15 minute | 1249.10  |
| 42.10000/- 89.83333 |     | LANARK                     | IL | 15 minute | 265.20   |
| 42.11667/-104.95000 |     | WHEATLAND, 4 N             | WY | 15 minute | 1413.70  |
| 42.11667/- 96.70000 |     | PENDER                     | NE | 15 minute | 408.40   |
| 42.13333/- 95.20000 |     | BOYER, 4 SE                | IA | 15 minute | 442.00   |
| 42.15000/- 96.08333 |     | HORNICK, 5 S               | IA | 15 minute | 326.10   |
| 42.18333/- 93.58333 |     | STORY CITY                 | IA | 15 minute | 297.20   |
| 42.18333/- 92.46667 |     | TRAER                      | IA | 15 minute | 289.60   |
| 42.20000/- 97.53333 |     | PIERCE                     | NE | 15 minute | 484.90   |
| 42.20000/- 91.53000 |     | CENTRAL CITY               | IA | 15 minute | 262.10   |
| 42.20000/- 89.10000 | RFD | ROCKFORD, WSO AP           | IL | 15 minute | 224.00   |
| 42.23333/- 98.91667 |     | AMELIA, 2 W                | NE | 15 minute | 667.50   |
| 42.23333/- 86.31667 |     | COLOMA, 3 NNW              | MI | 15 minute | 213.40   |
| 42.25000/- 88.83333 |     | BELVIDERE                  | IL | 15 minute | 248.40   |
| 42.26667/- 90.41667 |     | BELLEVUE, LOCK & DAM 12    | IA | 15 minute | 183.80   |
| 42.28333/- 97.06667 |     | WAYNE, 4 NW                | NE | 15 minute | 457.20   |
| 42.30000/- 91.01667 |     | CASCADE                    | IA | 15 minute | 259.10   |
| 42.30000/- 89.60000 |     | FREEPORT, WASTE WATERPLANT | IL | 15 minute | 228.60   |
| 42.33333/- 98.11667 |     | ROYAL                      | NE | 15 minute | 570.00   |
| 42.40000/- 96.38333 | SUX | SIOUX CITY, WSO AP         | IA | 15 minute | 334.10   |
| 42.40000/- 95.51667 |     | IDA GROVE, 5 NW            | IA | 15 minute | 402.30   |
| 42.40000/- 94.60000 |     | ROCKWELL CITY, 2           | IA | 15 minute | 362.70   |
| 42.40000/- 90.70000 | DBQ | DUBUQUE, MUNICIPAL AP      | IA | 15 minute | 321.90   |
| 42.46667/- 93.80000 |     | WEBSTER CITY               | IA | 15 minute | 356.60   |
| 42.48333/- 96.06667 |     | MOVILLE                    | IA | 15 minute | 364.20   |
| 42.50000/- 97.20000 |     | COLERIDGE                  | NE | 15 minute | 490.70   |

## STORM-FEST Operations Summary and Data Inventory

| Lat/Lon (dec. deg.) | Id  | Station Name                 | St | Frequency | Elev (m) |
|---------------------|-----|------------------------------|----|-----------|----------|
| 42.53333/- 93.26667 | ALO | IOWA FALLS                   | IA | 15 minute | 344.40   |
| 42.55000/- 92.40000 |     | WATERLOO, MUNICIPAL AP       | IA | 15 minute | 265.80   |
| 42.56667/- 88.83333 |     | CLINTON, 2 NNW               | WI | 15 minute | 292.60   |
| 42.58333/- 99.53333 |     | BASSETT                      | NE | 15 minute | 707.10   |
| 42.61667/- 90.43333 |     | CUBA CITY                    | WI | 15 minute | 289.60   |
| 42.61667/- 89.06667 |     | AFTON                        | WI | 15 minute | 226.20   |
| 42.66667/-104.03333 |     | HARRISON, 9 W                | NE | 15 minute | 1435.60  |
| 42.68333/- 91.53333 |     | STRAWBERRY POINT             | IA | 15 minute | 365.80   |
| 42.70000/- 94.26667 |     | HUMBOLDT, 3 W                | IA | 15 minute | 338.30   |
| 42.70000/- 92.60000 |     | SHELLROCK, 2 W               | IA | 15 minute | 298.70   |
| 42.75000/-105.38333 | 4DG | DOUGLAS                      | WY | 15 minute | 1464.60  |
| 42.75000/- 96.91667 |     | VERMILLION, 2 SE             | SD | 15 minute | 362.70   |
| 42.80000/- 89.86667 |     | BLANCHARDVILLE               | WI | 15 minute | 253.00   |
| 42.81667/- 95.96667 |     | REMSEN                       | IA | 15 minute | 405.40   |
| 42.83333/- 98.46667 |     | LYNCH                        | NE | 15 minute | 426.70   |
| 42.83333/- 90.78333 |     | LANCASTER, 4 WSW             | WI | 15 minute | 317.00   |
| 42.85000/- 97.48333 |     | GAVINS POINT, DAM            | NE | 15 minute | 382.50   |
| 42.86667/-100.55000 |     | VALENTINE, WSO AP            | NE | 15 minute | 787.60   |
| 42.86667/- 95.55000 |     | LARRABEE                     | IA | 15 minute | 410.00   |
| 42.86667/- 88.51667 |     | EAGLE, 2W                    | WI | 15 minute | 274.30   |
| 42.95000/-105.15000 | VTN | DOUGLAS, 17 NE               | WY | 15 minute | 1502.70  |
| 42.95000/- 93.28333 |     | SHEFFIELD, 4 NW              | IA | 15 minute | 320.00   |
| 42.95000/- 87.90000 |     | MILWAUKEE, MITCHELL FLD      | WI | 15 minute | 220.10   |
| 43.01667/- 91.18333 |     | MCGREGOR                     | IA | 15 minute | 191.10   |
| 43.03333/- 96.63333 |     | ALCESTER                     | SD | 15 minute | 431.30   |
| 43.05000/-104.65000 |     | LANCE CREEK, 1 W             | WY | 15 minute | 1344.80  |
| 43.05000/- 96.15000 |     | SIOUX CENTER, 2 SE           | IA | 15 minute | 414.50   |
| 43.05000/- 89.46667 |     | CHARMANY, FARM               | WI | 15 minute | 277.40   |
| 43.06667/- 98.53333 |     | PICKSTOWN                    | SD | 15 minute | 454.20   |
| 43.06667/- 86.20000 |     | GRAND HAVEN, WASTE WTR PLANT | MI | 15 minute | 184.40   |
| 43.10000/-101.56667 | MKE | LA CREEK, NATL WILDLIFE      | SD | 15 minute | 999.70   |
| 43.13333/- 95.13333 |     | SPENCER                      | IA | 15 minute | 314.90   |
| 43.13333/- 89.33333 |     | MADISON, DANE CO REGNL ARPT  | WI | 15 minute | 261.80   |
| 43.16667/- 86.23333 |     | MUSKEGON, COUNTY ARPT        | MI | 15 minute | 191.10   |
| 43.20000/- 91.95000 |     | SPILLVILLE                   | IA | 15 minute | 329.80   |
| 43.21667/- 91.10000 |     | LYNXVILLE, DAM 9             | WI | 15 minute | 192.90   |
| 43.23333/- 97.58333 |     | MENNO                        | SD | 15 minute | 403.60   |
| 43.28333/- 93.63333 |     | FOREST CITY, 2 NNE           | IA | 15 minute | 396.20   |
| 43.30000/-103.81667 |     | EDGEMONT                     | SD | 15 minute | 1054.60  |
| 43.30000/-100.66667 |     | MISSION                      | SD | 15 minute | 788.50   |
| 43.30000/- 94.51667 | MSN | RINGSTED                     | IA | 15 minute | 371.90   |
| 43.30000/- 89.35000 |     | ARLINGTON, UNIV FARM         | WI | 15 minute | 329.20   |
| 43.31667/- 88.40000 |     | HARTFORD, 2 W                | WI | 15 minute | 298.70   |
| 43.38333/- 92.91667 |     | STANSGAR                     | IA | 15 minute | 356.60   |
| 43.40000/-103.26667 |     | ORAL                         | SD | 15 minute | 902.20   |
| 43.41667/-104.95000 |     | DULL CENTER, 1 SE            | WY | 15 minute | 1345.70  |
| 43.45000/- 95.71667 |     | SIBLEY, 5 NNE                | IA | 15 minute | 509.00   |
| 43.45000/- 88.63333 |     | HORICON                      | WI | 15 minute | 268.20   |

| Lat/Lon (dec. deg.) | Id  | Station Name                  | St | Frequency | Elev (m) |
|---------------------|-----|-------------------------------|----|-----------|----------|
| 43.46667/- 86.41667 | FSD | MONTAGUE, 4 NW                | MI | 15 minute | 198.10   |
| 43.51667/- 89.43333 |     | PORTAGE                       | WI | 15 minute | 243.80   |
| 43.55000/-103.48333 |     | WIND CAVE                     | SD | 15 minute | 1261.90  |
| 43.56667/- 96.73333 |     | SIOUX FALLS, FOSS FIELD       | SD | 15 minute | 435.00   |
| 43.56667/- 91.23333 |     | GENOA, DAM 8                  | WI | 15 minute | 194.80   |
| 43.56667/- 90.63333 |     | LA FARGE                      | WI | 15 minute | 246.90   |
| 43.58333/- 98.43333 |     | STICKNEY                      | SD | 15 minute | 490.70   |
| 43.58333/- 91.66667 |     | SPRING GROVE, 1 W             | MN | 15 minute | 411.50   |
| 43.63333/-103.91667 |     | EDGEMONT, 23 NNW              | SD | 15 minute | 1341.70  |
| 43.63333/- 94.78333 |     | SHERBURN, 3 WSW               | MN | 15 minute | 402.30   |
| 43.65000/- 95.58333 |     | WORTHINGTON, 2 NNE            | MN | 15 minute | 478.50   |
| 43.66667/- 96.20000 |     | LUVERNE                       | MN | 15 minute | 457.20   |
| 43.66667/- 93.30000 |     | ALBERT LEA, 3 E               | MN | 15 minute | 374.90   |
| 43.68333/- 95.18333 |     | LAKEFIELD                     | MN | 15 minute | 459.60   |
| 43.68333/- 92.41667 |     | SPRING VALLEY                 | MN | 15 minute | 388.60   |
| 43.73333/- 96.61667 |     | SIOUX FALLS, EROS CENTER      | SD | 15 minute | 484.60   |
| 43.75000/-101.95000 |     | INTERIOR, 3 NE                | SD | 15 minute | 743.70   |
| 43.83333/- 91.76667 | RST | RUSHFORD                      | MN | 15 minute | 234.70   |
| 43.85000/-104.21667 |     | NEWCASTLE                     | WY | 15 minute | 1344.20  |
| 43.86667/- 91.30000 |     | LA CRESCENT, DAM 7            | MN | 15 minute | 197.20   |
| 43.88333/-100.70000 |     | MURDO                         | SD | 15 minute | 707.10   |
| 43.91667/- 92.50000 |     | ROCHESTER, WSO AP             | MN | 15 minute | 400.80   |
| 43.96667/-101.86667 |     | COTTONWOOD, 2 E               | SD | 15 minute | 735.80   |
| 43.96667/- 89.81667 |     | FRIENDSHIP, RANGER STATION    | WI | 15 minute | 292.60   |
| 43.98333/-104.41667 |     | OSAGE                         | WY | 15 minute | 1316.70  |
| 44.00000/- 91.43333 |     | TREMPEALEAU, DAM 6            | WI | 15 minute | 201.20   |
| 44.00000/- 90.50000 |     | TOMAH, RANGER STATION         | WI | 15 minute | 292.60   |
| 44.01667/- 97.51667 |     | HOWARD                        | SD | 15 minute | 475.50   |
| 44.03333/- 92.83333 |     | DODGE CENTER                  | MN | 15 minute | 387.10   |
| 44.03333/- 88.15000 |     | CHILTON                       | WI | 15 minute | 256.00   |
| 44.03333/- 86.51667 | RAP | LUDINGTON, STATE PARK         | MI | 15 minute | 181.40   |
| 44.05000/-103.06667 |     | RAPID CITY, REGIONAL ARPT     | SD | 15 minute | 970.20   |
| 44.06667/-103.48333 |     | PACTOLA, DAM                  | SD | 15 minute | 1438.70  |
| 44.06667/- 99.46667 |     | LAKE SHARPE, PROJECT          | SD | 15 minute | 445.00   |
| 44.23333/- 95.61667 |     | TRACY                         | MN | 15 minute | 427.60   |
| 44.25000/- 99.45000 |     | STEPHAN, 1 ENE                | SD | 15 minute | 568.50   |
| 44.25000/- 94.98333 |     | SPRINGFIELD, 1 NW             | MN | 15 minute | 324.90   |
| 44.26667/-104.95000 |     | MOORCROFT                     | WY | 15 minute | 1281.70  |
| 44.28333/- 90.85000 |     | BLACK RIVER FALLS, SEWAGE     | WI | 15 minute | 246.90   |
| 44.30000/- 90.11667 |     | BABCOCK, 1 WNW                | WI | 15 minute | 298.70   |
| 44.31667/- 96.76667 |     | BROOKINGS, 2 NE               | SD | 15 minute | 499.90   |
| 44.33333/- 91.93333 |     | ALMA, DAM 4                   | WI | 15 minute | 204.20   |
| 44.38333/- 98.21667 | HON | HURON, REGIONAL ARPT          | SD | 15 minute | 392.00   |
| 44.45000/-100.41667 |     | OAHE, DAM                     | SD | 15 minute | 506.00   |
| 44.46667/- 93.91667 |     | LE SUEUR                      | MN | 15 minute | 257.60   |
| 44.46667/- 93.15000 |     | NORTHFIELD, 2 NNE             | MN | 15 minute | 271.30   |
| 44.48333/- 88.13333 | GRB | GREENBAY, AUSTIN STRAUBEL FLD | WI | 15 minute | 211.80   |

STORM-FEST Operations Summary and Data Inventory

| Lat/Lon (dec. deg.) | Id  | Station Name               | St | Frequency       | Elev (m) |
|---------------------|-----|----------------------------|----|-----------------|----------|
| 44.50000/-103.86667 |     | SPEARFISH                  | SD | 15 minute       | 1109.50  |
| 44.50000/- 91.45000 |     | STRUM, 4 S                 | WI | 15 minute       | 268.20   |
| 44.53333/-101.56667 |     | MILESVILLE, 8 NE           | SD | 15 minute       | 676.70   |
| 44.55000/-102.18333 |     | PLAINVIEW, 4 SSW           | SD | 15 minute       | 742.20   |
| 44.61667/- 92.61667 |     | REDWING, DAM 3             | MN | 15 minute       | 206.40   |
| 44.61667/- 88.75000 |     | CLINTONVILLE               | WI | 15 minute       | 243.80   |
| 44.63333/- 97.91667 |     | CARPENTER                  | SD | 15 minute       | 445.00   |
| 44.65000/- 90.13333 |     | MARSHFIELD, EXP FARM       | WI | 15 minute       | 381.00   |
| 44.71667/- 96.28333 |     | CANBY                      | MN | 15 minute       | 378.90   |
| 44.73333/- 90.71667 |     | WILLARD                    | WI | 15 minute       | 454.20   |
| 44.73333/- 89.75000 |     | EAU PLEINE, RESERVOIR      | WI | 15 minute       | 346.90   |
| 44.75000/-105.70000 |     | RECLUSE                    | WY | 15 minute       | 1264.90  |
| 44.81667/- 95.55000 |     | GRANITE FALLS, POWER PLANT | MN | 15 minute       | 271.90   |
| 44.86667/- 89.65000 |     | WAUSAU, 7 SSW              | WI | 15 minute       | 359.70   |
| 44.86667/- 87.33333 |     | STURGEON BAY, EXP FARM     | WI | 15 minute       | 200.00   |
| 44.88000/- 91.93000 |     | MENOMONIE                  | WI | 15 minute       | 237.70   |
| 44.88333/- 93.21667 | MSP | MINNEAPOLIS, INT'L ARPT    | MN | 15 minute       | 256.00   |
| 44.90000/- 98.50000 | 3DE | REDFIELD, 2 NE             | SD | 15 minute       | 393.20   |
| 44.91667/- 97.15000 | ATY | WATERTOWN, MUNICIPAL AP    | SD | 15 minute       | 532.20   |
| 44.91667/- 94.36667 |     | HUTCHINSON, 1 N            | MN | 15 minute       | 333.80   |
| 44.93333/- 91.38333 |     | CHIPPEWA FALLS             | WI | 15 minute       | 259.10   |
| 45.00000/- 93.40000 |     | GOLDEN VALLEY              | MN | 15 minute       | 277.40   |
| HIS                 |     |                            |    |                 |          |
| 39.83000/- 96.11000 | 62K | Seneca, HIS                | KS | no set schedule | 384.00   |

High Plains Climate Network

|                     |     |              |    |        |         |
|---------------------|-----|--------------|----|--------|---------|
| 37.27000/-102.20000 | 059 | Walsh        | CO | hourly | 210.00  |
| 37.37000/- 95.27000 | 034 | Parsons      | KS | hourly | 277.00  |
| 37.87000/- 97.50000 | 093 | Wichita      | KS | hourly | 379.00  |
| 37.93000/- 98.75000 | 036 | Sandyland    | KS | hourly | 564.00  |
| 37.93000/- 98.02000 | 079 | Hutchinson   | KS | hourly | 477.00  |
| 37.98000/-100.80000 | 037 | GardenCity   | KS | hourly | 866.00  |
| 38.13000/- 97.38000 | 035 | Hesston      | KS | hourly | 412.00  |
| 38.45000/-101.75000 | 038 | Tribune      | KS | hourly | 1101.00 |
| 38.60000/- 95.27000 | 033 | Ottawa       | KS | hourly | 277.00  |
| 38.87000/- 99.32000 | 040 | Hays         | KS | hourly | 610.00  |
| 38.98000/- 94.93000 | 094 | DeSoto       | KS | hourly | 286.00  |
| 39.10000/- 95.92000 | 078 | Rossville    | KS | hourly | 281.00  |
| 39.10000/- 95.83000 | 032 | Silver Lake  | KS | hourly | 271.00  |
| 39.18000/- 96.57000 | 031 | Manhattan #1 | KS | hourly | 320.00  |
| 39.30000/-102.50000 | 057 | Stratton     | CO | hourly | 390.00  |
| 39.37000/-101.07000 | 039 | Colby        | KS | hourly | 966.00  |
| 39.78000/- 97.78000 | 041 | Scandia      | KS | hourly | 451.00  |
| 39.78000/- 95.80000 | 080 | Powhattan    | KS | hourly | 365.00  |
| 40.15000/-103.13000 | 018 | Akron        | CO | hourly | 1384.00 |

| Lat/Lon (dec. deg.) | Id  | Station Name       | St | Frequency | Elev (m) |
|---------------------|-----|--------------------|----|-----------|----------|
| 40.17000/- 98.87000 | 096 | Red Cloud          | NE | hourly    | 524.00   |
| 40.22000/-100.57000 | MCK | McCook             | NE | hourly    | 792.00   |
| 40.25000/- 96.73000 | 087 | Beatrice           | NE | hourly    | 376.00   |
| 40.37000/-101.72000 | 003 | Champion           | NE | hourly    | 1029.00  |
| 40.42000/- 99.37000 | 061 | Holdrege           | NE | hourly    | 707.00   |
| 40.45000/-103.02000 | 058 | Sterling           | CO | hourly    | 200.00   |
| 40.47000/- 95.87000 | 095 | Rockport           | MO | hourly    | 268.00   |
| 40.52000/- 98.13000 | 009 | South Central      | NE | hourly    | 552.00   |
| 40.63000/-100.50000 | 052 | UNSTA Curtis       | NE | hourly    | 784.00   |
| 40.68000/- 99.00000 | 024 | Gibbon             | NE | hourly    | 625.00   |
| 40.75000/- 96.68000 | 055 | Lincoln IANR       | NE | hourly    | 383.00   |
| 40.77000/- 98.75000 | 098 | Shelton            | NE | hourly    | 614.00   |
| 40.78000/- 99.73000 | 053 | Lexington          | NE | hourly    | 731.00   |
| 40.83000/-101.67000 | 022 | Grant              | NE | hourly    | 975.00   |
| 40.83000/- 96.67000 | 015 | Havelock           | NE | hourly    | 351.00   |
| 41.00000/-100.92000 | 005 | Dickens            | NE | hourly    | 945.00   |
| 41.00000/- 93.27000 | 067 | Chariton           | IA | hourly    | 396.00   |
| 41.07000/-100.73000 | 012 | North Platte       | NE | hourly    | 922.00   |
| 41.10000/- 98.00000 | 054 | Central City       | NE | hourly    | 517.00   |
| 41.13000/- 96.50000 | 001 | Mead               | NE | hourly    | 366.00   |
| 41.15000/- 96.50000 | 051 | Mead Turf Farm     | NE | hourly    | 366.00   |
| 41.18000/-104.08000 | 042 | Pine Bluffs        | WY | hourly    | 1554.00  |
| 41.18000/- 97.32000 | 046 | Rising City        | NE | hourly    | 375.00   |
| 41.22000/-103.00000 | 014 | Sidney             | NE | hourly    | 1317.00  |
| 41.22000/- 91.68000 | 090 | Crawfordsville     | IA | hourly    | 216.00   |
| 41.37000/-101.67000 | 056 | Arapahoe Prairie   | NE | hourly    | 97.00    |
| 41.52000/-102.78000 | 026 | Silverthorn        | NE | hourly    | 1302.00  |
| 41.57000/- 97.55000 | 048 | Tarnov             | NE | hourly    | 472.00   |
| 41.60000/- 98.93000 | 017 | Ord                | NE | hourly    | 625.00   |
| 41.63000/-101.50000 | 006 | Arthur             | NE | hourly    | 1097.00  |
| 41.82000/- 96.80000 | 007 | West Point         | NE | hourly    | 442.00   |
| 41.83000/-103.68000 | 011 | Panhandle          | NE | hourly    | 1244.00  |
| 41.85000/-103.68000 | 097 | Scottsbluff        | NE | hourly    | 1208.00  |
| 41.90000/-100.32000 | 082 | Halsey             | NE | hourly    | 824.00   |
| 41.98000/- 98.27000 | 065 | Elgin              | NE | hourly    | 619.00   |
| 42.03000/- 95.80000 | 060 | Castana Exp. Sta N | IA | hourly    | 432.00   |
| 42.03000/- 93.73000 | 050 | Gilbert            | IA | hourly    | 305.00   |
| 42.03000/- 93.73000 | 050 | Ames Southwest     | IA | hourly    | 305.00   |
| 42.07000/-104.93000 | 043 | Wheatland          | WY | hourly    | 417.00   |
| 42.07000/-102.85000 | 063 | Alliance North     | NE | hourly    | 213.00   |
| 42.13000/-102.85000 | 062 | Alliance West      | NE | hourly    | 213.00   |
| 42.37000/- 96.97000 | 010 | North East         | NE | hourly    | 445.00   |
| 42.40000/-101.43000 | 013 | Gudmundsen's       | NE | hourly    | 1049.00  |
| 42.45000/- 98.63000 | 030 | O'Neill            | NE | hourly    | 670.00   |
| 42.55000/- 99.85000 | 023 | Ainsworth          | NE | hourly    | 765.00   |
| 42.68000/- 94.42000 | 091 | Gilmore            | IA | hourly    | 360.00   |
| 42.78000/-102.15000 | 025 | Gordon             | NE | hourly    | 1109.00  |

STORM-FEST Operations Summary and Data Inventory

| Lat/Lon (dec. deg.) | Id  | Station Name | St | Frequency | Elev (m) |
|---------------------|-----|--------------|----|-----------|----------|
| 42.93000/- 92.55000 | 068 | Nashua       | IA | hourly    | 360.00   |
| 42.97000/- 95.48000 | 066 | Sutherland   | IA | hourly    | 396.00   |
| 43.07000/- 96.92000 | 064 | Beresford    | SD | hourly    | 381.00   |
| 43.48000/-103.32000 | 029 | Buffalo Gap  | SD | hourly    | 981.00   |
| 43.78000/- 99.32000 | 028 | Oacoma       | SD | hourly    | 427.00   |
| 43.97000/-101.85000 | 069 | Cottonwood   | SD | hourly    | 722.00   |
| 44.27000/-100.00000 | 092 | Pierre       | SD | hourly    | 451.00   |
| 44.30000/- 96.75000 | 019 | Brookings    | SD | hourly    | 500.00   |
| 44.67000/-103.55000 | 070 | Nisland      | SD | hourly    | 722.00   |
| 44.87000/- 98.38000 | 021 | Redfield     | SD | hourly    | 395.00   |
| 44.90000/- 97.13000 | 081 | Watertown    | SD | hourly    | 532.00   |
| 44.98000/-100.27000 | 020 | Gettysburg   | SD | hourly    | 568.00   |

Illinois Water Survey Network

|                     |     |               |    |          |        |
|---------------------|-----|---------------|----|----------|--------|
| 37.45000/- 88.67000 | dxs | Dixon Springs | IL | 5 minute | 165.00 |
| 37.72000/- 89.23000 | siu | Carbondale    | IL | 5 minute | 137.00 |
| 38.13000/- 88.92000 | rdl | Rend Lake     | IL | 5 minute | 130.00 |
| 38.38000/- 88.38000 | frf | Fairfield     | IL | 5 minute | 136.00 |
| 38.52000/- 89.88000 | bel | Belleville    | IL | 5 minute | 133.00 |
| 38.73000/- 88.10000 | one | Olney         | IL | 5 minute | 134.00 |
| 38.95000/- 88.95000 | brs | Brownstown    | IL | 5 minute | 177.00 |
| 39.52000/- 89.62000 | llc | Springfield   | IL | 5 minute | 177.00 |
| 39.80000/- 90.83000 | orr | Orr           | IL | 5 minute | 206.00 |
| 40.05000/- 88.37000 | bnd | Bondville     | IL | 5 minute | 213.00 |
| 40.08000/- 88.23000 | cmi | Champaign     | IL | 5 minute | 219.00 |
| 40.17000/- 90.08000 | snd | Sand Farm     | IL | 5 minute | 152.00 |
| 40.70000/- 89.52000 | icc | Peoria        | IL | 5 minute | 207.00 |
| 40.72000/- 89.75000 | wfp | Wildlife Park | IL | 5 minute | 186.00 |
| 40.92000/- 90.73000 | mnh | Monmouth      | IL | 5 minute | 229.00 |
| 40.95000/- 88.17000 | sll | Stelle        | IL | 5 minute | 213.00 |
| 41.85000/- 88.85000 | dek | DeKalb        | IL | 5 minute | 265.00 |
| 41.90000/- 88.37000 | scs | St. Charles   | IL | 5 minute | 226.00 |
| 42.28000/- 89.67000 | fre | Freeport      | IL | 5 minute | 265.00 |

NCAR ASTER

|                     |     |         |    |          |        |
|---------------------|-----|---------|----|----------|--------|
| 39.91000/- 95.84000 | BLN | Sabetha | KS | 1 minute | 410.00 |
|---------------------|-----|---------|----|----------|--------|

NCAR PAM Mesonet

|                     |     |               |    |          |        |
|---------------------|-----|---------------|----|----------|--------|
| 36.88000/- 93.89810 | 032 | Monett        | MO | 5 minute | 436.00 |
| 36.90970/- 94.88940 | 031 | Miami         | OK | 5 minute | 245.00 |
| 36.97250/- 92.68580 | 033 | Ava           | MO | 5 minute | 385.00 |
| 36.99220/- 91.71750 | 034 | Mountain View | MO | 5 minute | 354.00 |
| 37.12440/- 90.71280 | 035 | Piedmont      | MO | 5 minute | 142.00 |
| 37.44360/- 94.73310 | 026 | Pittsburg     | KS | 5 minute | 287.00 |
| 37.61860/- 91.60750 | 029 | Salem         | MO | 5 minute | 369.00 |

| Lat/Lon (dec. deg.) | Id  | Station Name    | St      | Frequency | Elev (m) |        |
|---------------------|-----|-----------------|---------|-----------|----------|--------|
| 37.64360/- 92.65420 | 028 | Lebanon         | MO      | 5 minute  | 402.00   |        |
| 37.66190/- 93.81470 | 027 | Stockton        | MO      | 5 minute  | 317.00   |        |
| 37.76190/- 90.42940 | 030 | Farmington      | MO      | 5 minute  | 280.00   |        |
| 38.13060/- 91.76420 | 023 | Rolla           | MO      | 5 minute  | 340.00   |        |
| 38.14580/- 89.70190 | 025 | Sparta          | IL      | 5 minute  | 162.00   |        |
| 38.28030/- 95.21670 | 014 | Garnett         | KS      | 5 minute  | 302.00   |        |
| 38.28940/- 94.34250 | 015 | Butler          | MO      | 5 minute  | 264.00   |        |
| 38.36000/- 93.68110 | 016 | Clinton         | MO      | 5 minute  | 248.00   |        |
| 38.37420/- 90.97560 | 024 | St. Clair       | MO      | 5 minute  | 203.00   |        |
| 38.42720/- 92.87440 | 017 | Versailles      | MO      | 5 minute  | 310.00   |        |
| 38.81780/- 92.21470 | 018 | Columbia        | MO      | 5 minute  | 271.00   |        |
| 38.89080/- 90.05330 | 020 | East Alton      | IL      | 5 minute  | 165.00   |        |
| 38.98830/- 89.16420 | 022 | Vandalia        | IL      | 5 minute  | 163.00   |        |
| 39.01190/- 91.41750 | 019 | Montgomery City | MO      | 5 minute  | 234.00   |        |
| 39.01670/- 94.21310 | 009 | Grain Valley    | MO      | 5 minute  | 257.00   |        |
| 39.07250/- 95.62560 | 037 | Topeka          | KS      | 1 minute  | 268.00   |        |
| 39.09890/- 93.19890 | 010 | Marshall        | MO      | 5 minute  | 234.00   |        |
| 39.46470/- 92.43110 | 011 | Moberly         | MO      | 5 minute  | 263.00   |        |
| 39.53310/- 89.32360 | 021 | Taylorville     | IL      | 5 minute  | 188.00   |        |
| 39.55030/- 96.12720 | 043 | Havensville     | (BLN-9) | KS        | 1 minute | 386.00 |
| 39.69610/- 96.11530 | 045 | Centralia       | (BLN-h) | KS        | 1 minute | 412.00 |
| 39.72720/- 91.44670 | 012 | Hannibal        | MO      | 5 minute  | 232.00   |        |
| 39.72750/- 94.27220 | 005 | Cameron         | MO      | 5 minute  | 309.00   |        |
| 39.77110/- 90.23940 | 013 | Jacksonville    | IL      | 5 minute  | 188.00   |        |
| 39.78310/- 93.49750 | 006 | Chillicothe     | MO      | 5 minute  | 237.00   |        |
| 39.79610/- 95.64560 | 040 | Powhattan       | (BLN-3) | KS        | 1 minute | 365.00 |
| 39.81360/- 95.86220 | 047 | Woodlawn        | (BLN-d) | KS        | 1 minute | 401.00 |
| 39.83000/- 96.10780 | 041 | Seneca          | (BLN-5) | KS        | 1 minute | 386.00 |
| 39.87830/- 96.29560 | 046 | Axtell          | (BLN-a) | KS        | 1 minute | 427.00 |
| 39.92830/- 96.51390 | 042 | Home            | (BLN-7) | KS        | 1 minute | 420.00 |
| 39.97280/- 96.07640 | 044 | Seneca North    | (BLN-e) | KS        | 1 minute | 370.00 |
| 40.08170/- 95.99030 | 039 | Humboldt        | (BLN-1) | NE        | 1 minute | 326.00 |
| 40.09390/- 92.54060 | 007 | Kirksville      | MO      | 5 minute  | 293.00   |        |
| 40.33470/- 94.81920 | 002 | Maryville       | MO      | 5 minute  | 296.00   |        |
| 40.41830/- 93.59810 | 003 | Princeton       | MO      | 5 minute  | 256.00   |        |
| 40.46280/- 91.43140 | 008 | Keokuk          | IA      | 5 minute  | 202.00   |        |
| 40.65690/- 95.86000 | 001 | Nebraska City   | NE      | 5 minute  | 325.00   |        |
| 40.72720/- 92.43000 | 004 | Bloomfield      | IA      | 5 minute  | 269.00   |        |

## ASOS

|                     |     |                                   |    |          |         |
|---------------------|-----|-----------------------------------|----|----------|---------|
| 34.35000/- 98.98000 | FDR | Frederick                         | OK | 5 minute | 383.00  |
| 34.43000/-100.29000 | CDS | Childress                         | TX | 5 minute | 595.00  |
| 34.88000/- 95.78000 | MLC | McAlester                         | OK | 5 minute | 235.00  |
| 35.22000/-101.71000 | AMA | Amarillo                          | TX | 5 minute | 1099.00 |
| 35.39000/- 97.60000 | OKC | Oklahoma City, WSFO Airport       | OK | 5 minute | 398.00  |
| 35.53000/- 97.65000 | PWA | Oklahoma City, Wiley Post Airport | OK | 5 minute | 396.00  |

STORM-FEST Operations Summary and Data Inventory

| Lat/Lon (dec. deg.) | Id  | Station Name                   | St | Frequency | Elev (m) |
|---------------------|-----|--------------------------------|----|-----------|----------|
| 35.66000/- 95.36000 | MKO | Muskogee                       | OK | 5 minute  | 186.00   |
| 35.85000/- 97.42000 | GOK | Guthrie                        | OK | 5 minute  | 327.00   |
| 36.02000/-102.55000 | DHT | Dalhart                        | TX | 5 minute  | 1219.00  |
| 36.16000/- 97.09000 | SWO | Stillwater                     | OK | 5 minute  | 300.00   |
| 36.20000/- 95.89000 | TUL | Tulsa                          | OK | 5 minute  | 206.00   |
| 36.73000/- 97.10000 | PNC | Ponca City                     | OK | 5 minute  | 304.00   |
| 36.76000/- 96.01000 | BVO | Bartlesville                   | OK | 5 minute  | 220.00   |
| 37.17000/- 97.04000 | WLD | Winfield/Ark City              | KS | 5 minute  | 353.00   |
| 37.24000/- 93.39000 | SGF | Springfield                    | MO | 5 minute  | 387.00   |
| 37.33000/- 95.51000 | PPF | Parsons                        | KS | 5 minute  | 274.00   |
| 37.45000/-105.87000 | ALS | Alamosa                        | CO | 5 minute  | 2299.00  |
| 37.65000/- 97.43000 | ICT | Wichita, Mid-Continent Airport | KS | 5 minute  | 409.00   |
| 37.67000/- 95.49000 | CNU | Chanute                        | KS | 5 minute  | 308.00   |
| 37.75000/- 97.22000 | 3KM | Wichita, Jabara Airport        | KS | 5 minute  | 433.00   |
| 37.76000/- 99.96000 | DDC | Dodge City                     | KS | 5 minute  | 790.00   |
| 37.93000/-100.72000 | GCK | Garden City                    | KS | 5 minute  | 879.00   |
| 38.05000/-103.51000 | LHX | LaJunta                        | CO | 5 minute  | 1285.00  |
| 38.07000/-102.69000 | LAA | Lamar                          | CO | 5 minute  | 1129.00  |
| 38.07000/- 97.86000 | HUT | Hutchinson                     | KS | 5 minute  | 465.00   |
| 38.29000/-104.50000 | PUB | Pueblo                         | CO | 5 minute  | 1439.00  |
| 38.33000/- 96.19000 | EMP | Emporia                        | KS | 5 minute  | 370.00   |
| 38.70000/- 93.18000 | DMO | Sedalia                        | MO | 5 minute  | 277.00   |
| 38.79000/- 97.65000 | SLN | Salina                         | KS | 5 minute  | 391.00   |
| 38.81000/-104.71000 | COS | Colorado Springs               | CO | 5 minute  | 1881.00  |
| 38.83000/- 94.89000 | IXD | Olathe                         | KS | 5 minute  | 331.00   |
| 38.85000/- 94.74000 | OJC | Olathe                         | KS | 5 minute  | 343.00   |
| 38.87000/- 98.81000 | RSL | Russell                        | KS | 5 minute  | 570.00   |
| 38.95000/- 95.66000 | FOE | Topeka, Forbes Field           | KS | 5 minute  | 329.00   |
| 39.07000/- 95.62000 | TOP | Topeka, Municipal Airport      | KS | 1 minute  | 270.00   |
| 39.14000/- 96.67000 | MHK | Manhattan                      | KS | 5 minute  | 326.00   |
| 39.30000/- 94.72000 | MCI | Kansas City                    | MO | 5 minute  | 313.00   |
| 39.37000/-101.70000 | GLD | Goodland                       | KS | 5 minute  | 1124.00  |
| 39.38000/- 99.83000 | HLC | Hill City                      | KS | 5 minute  | 677.00   |
| 39.55000/- 97.65000 | CNK | Concordia                      | KS | 5 minute  | 452.00   |
| 39.77000/-104.88000 | DEN | Denver                         | CO | 5 minute  | 1629.00  |
| 39.77000/- 94.91000 | STJ | St Joseph                      | MO | 5 minute  | 249.00   |
| 40.17000/-103.22000 | AKO | Akron                          | CO | 5 minute  | 1409.00  |
| 40.21000/-100.59000 | MCK | McCook                         | NE | 5 minute  | 786.00   |
| 40.60000/- 98.43000 | HSI | Hastings                       | NE | 5 minute  | 592.00   |
| 40.85000/- 96.76000 | LNK | Lincoln                        | NE | 5 minute  | 363.00   |
| 40.97000/- 98.31000 | GRI | Grand Island                   | NE | 5 minute  | 566.00   |
| 41.10000/-102.98000 | SNY | Sidney                         | NE | 5 minute  | 1313.00  |
| 41.76000/- 96.18000 | TQE | Tekamah                        | NE | 5 minute  | 313.00   |

AWOS

|                     |     |         |    |           |         |
|---------------------|-----|---------|----|-----------|---------|
| 32.85000/-104.47000 | ATS | Artesia | NM | 20 minute | 1081.00 |
| 34.30000/- 97.02000 | IFO | Ardmore | OK | 20 minute | 232.00  |

| Lat/Lon (dec. deg.) | Id  | Station Name                  | St | Frequency | Elev (m) |
|---------------------|-----|-------------------------------|----|-----------|----------|
| 34.42000/-103.08000 | CVN | Clovis                        | NM | 20 minute | 1284.00  |
| 34.60000/- 91.57000 | SGT | Stuttgart                     | AR | 20 minute | 68.00    |
| 34.81000/- 96.67000 | ADH | Ada                           | OK | 20 minute | 307.00   |
| 35.23000/- 97.47000 | OUN | Norman (Univ. of Oklahoma)    | OK | 20 minute | 359.00   |
| 35.73000/- 91.65000 | BVX | Batesville                    | AR | 20 minute | 141.00   |
| 35.86000/- 98.42000 | OK7 | Watonga                       | OK | 20 minute | 468.00   |
| 36.13000/- 90.62000 | ARG | Walnut Ridge                  | AR | 20 minute | 84.00    |
| 36.18000/- 94.13000 | ASG | Springdale                    | AR | 20 minute | 412.00   |
| 36.19000/- 94.49000 | SLG | Siloam Spring                 | AR | 20 minute | 364.00   |
| 36.29000/- 92.59000 | FLP | Flippin                       | AR | 20 minute | 219.00   |
| 36.35000/- 94.22000 | HOO | Bentonville                   | AR | 20 minute | 609.00   |
| 36.37000/- 94.20000 | H00 | Bentonville Municipal Airport | AR | 20 minute | 401.00   |
| 36.37000/- 94.11000 | ROG | Rogers                        | AR | 20 minute | 415.00   |
| 36.46000/-105.67000 | SKX | Taos                          | NM | 20 minute | 2161.00  |
| 37.05000/-100.97000 | LBL | Liberal                       | KS | 20 minute | 880.00   |
| 37.25000/-104.33000 | TAD | Trinidad                      | CO | 20 minute | 1756.00  |
| 38.06000/- 97.28000 | EWK | Newton                        | KS | 20 minute | 467.00   |
| 38.10000/- 92.55000 | AIZ | Kaiser/Lake Ozark             | MO | 20 minute | 265.00   |
| 38.32000/- 88.87000 | MVN | Mount Vernon                  | IL | 20 minute | 146.00   |
| 38.35000/- 98.86000 | GBD | Great Bend                    | KS | 20 minute | 576.00   |
| 38.85000/- 99.27000 | HYS | Hays                          | KS | 20 minute | 609.00   |
| 39.79000/-104.55000 | FTG | Denver (Front Range)          | CO | 20 minute | 1672.00  |
| 39.93000/- 91.20000 | UIN | Quincy                        | IL | 20 minute | 234.00   |
| 40.32000/- 96.75000 | BIE | Beatrice                      | NE | 20 minute | 402.00   |
| 40.43000/-104.63000 | GXY | Greeley                       | CO | 20 minute | 1420.00  |
| 40.45000/-105.02000 | FNL | Fort Collins                  | CO | 20 minute | 1529.00  |
| 40.45000/- 99.33000 | HDE | Holdrege                      | NE | 20 minute | 705.00   |
| 40.73000/- 99.00000 | EAR | Kearney                       | NE | 20 minute | 649.00   |
| 40.79000/- 99.78000 | LXN | Lexington                     | NE | 20 minute | 734.00   |
| 40.89000/- 97.99000 | AUH | Aurora                        | NE | 20 minute | 549.00   |
| 41.02000/- 94.36000 | CSQ | Creston                       | IA | 1 minute  | 395.00   |
| 41.07000/- 87.85000 | IKK | Greater Kankakee              | IL | 20 minute | 191.00   |
| 41.12000/-101.77000 | OGA | Ogallala                      | NE | 20 minute | 999.00   |
| 41.20000/- 96.11000 | MLE | Omaha (Millard)               | NE | 20 minute | 320.00   |
| 41.45000/- 97.35000 | OLU | Columbus                      | NE | 20 minute | 440.00   |
| 41.45000/- 96.51000 | FET | Fremont                       | NE | 20 minute | 367.00   |
| 41.70000/- 94.92000 | ADU | Audubon                       | IA | 20 minute | 396.00   |
| 41.74000/- 89.67000 | SQI | Sterling/Rock Falls           | IL | 20 minute | 197.00   |
| 41.83000/- 90.33000 | CWI | Clinton                       | IA | 1 minute  | 216.00   |
| 41.98000/- 95.38000 | DNS | Denison                       | IA | 1 minute  | 389.00   |
| 41.99000/- 93.62000 | AMW | Ames                          | IA | 20 minute | 283.00   |
| 42.47000/- 98.68000 | ONL | O'Neill                       | NE | 20 minute | 619.00   |
| 42.55000/- 94.18000 | FOD | Fort Dodge                    | IA | 20 minute | 353.00   |
| 42.92000/- 97.38000 | YKN | Yankton                       | SD | 20 minute | 397.00   |
| 43.65000/- 95.58000 | OTG | Worthington                   | MN | 20 minute | 480.00   |
| 43.65000/- 94.42000 | FRM | Fairmont                      | MN | 20 minute | 354.00   |
| 44.13000/- 87.67000 | MTW | Manitowoc                     | WI | 20 minute | 198.00   |

STORM-FEST Operations Summary and Data Inventory

| Lat/Lon (dec. deg.)            | Id  | Station Name                   | St | Frequency       | Elev (m) |
|--------------------------------|-----|--------------------------------|----|-----------------|----------|
| 44.22000/- 93.92000            | MKT | Mankato                        | MN | 20 minute       | 311.00   |
| 44.31000/- 96.81000            | BKX | Brookings                      | SD | 20 minute       | 499.00   |
| 44.45000/- 95.82000            | MML | Marshall                       | MN | 20 minute       | 359.00   |
| 44.84000/- 87.42000            | SUE | Sturgeon Bay                   | WI | 20 minute       | 221.00   |
| 44.87000/- 91.48000            | EAU | Eau Claire                     | WI | 20 minute       | 276.00   |
| <b>Radar, NWS RADAP</b>        |     |                                |    |                 |          |
| 35.23000/-101.70000            | AMA | Amarillo                       | TX | no set schedule | 1098.80  |
| 35.40000/- 97.60000            | OKC | Oklahoma City, WSFO Airport    | OK | no set schedule | 390.80   |
| 36.88000/- 93.90000            | UMN | Monett                         | MO | no set schedule | 438.90   |
| 37.65000/- 97.43000            | ICT | Wichita, Mid-Continent Airport | KS | no set schedule | 402.60   |
| 37.93000/-100.72000            | GCK | Garden City                    | KS | no set schedule | 878.40   |
| 39.18000/-103.70000            | LIC | Limon                          | CO | no set schedule | 1694.10  |
| <b>Radar, NWS WSR-57</b>       |     |                                |    |                 |          |
| 38.70000/- 90.68000            | STL | St. Louis                      | MO | no set schedule | 185.00   |
| 40.97000/- 98.32000            | GRI | Grand Island                   | NE | no set schedule | 566.00   |
| <b>PROFS mesonet</b>           |     |                                |    |                 |          |
| 39.23000/-104.63000            | ELB | Elbert                         | CO | 5 minute        | 2135.00  |
| 39.57000/-104.96000            | LTN | Littleton                      | CO | 5 minute        | 1740.00  |
| 39.68000/-105.49000            | SQM | Idaho Springs                  | CO | 5 minute        | 3456.00  |
| 39.70000/-105.16000            | LAK | Lakewood                       | CO | 5 minute        | 1826.00  |
| 39.74000/-104.13000            | BYE | Byers                          | CO | 5 minute        | 1555.00  |
| 39.77000/-104.87000            | AUR | Aurora                         | CO | 5 minute        | 1608.00  |
| 39.80000/-105.10000            | ARV | Arvada                         | CO | 5 minute        | 1635.00  |
| 39.91000/-105.49000            | ROL | Rollinsville                   | CO | 5 minute        | 2749.00  |
| 39.99000/-104.80000            | BRI | Brighton                       | CO | 5 minute        | 1519.00  |
| 40.01000/-105.25000            | BOU | Boulder                        | CO | 5 minute        | 1612.00  |
| 40.04000/-105.54000            | WRD | Ward                           | CO | 5 minute        | 3005.00  |
| 40.05000/-105.01000            | ERI | Erie                           | CO | 5 minute        | 1584.00  |
| 40.07000/-104.51000            | KNB | Keenesburg                     | CO | 5 minute        | 1519.00  |
| 40.17000/-105.16000            | LGM | Longmont                       | CO | 5 minute        | 1536.00  |
| 40.26000/-104.87000            | PLT | Platteville                    | CO | 5 minute        | 1449.00  |
| 40.33000/-103.80000            | FTM | Fort Morgan                    | CO | 5 minute        | 1370.00  |
| 40.37000/-105.56000            | EPK | Estes Park                     | CO | 5 minute        | 2396.00  |
| 40.41000/-105.04000            | LVE | Loveland                       | CO | 5 minute        | 1513.00  |
| 40.42000/-104.63000            | GLY | Greeley                        | CO | 5 minute        | 1415.00  |
| 40.59000/-105.15000            | FOR | Fort Collins                   | CO | 5 minute        | 1603.00  |
| 40.65000/-104.34000            | BGD | Briggsdale                     | CO | 5 minute        | 1480.00  |
| 40.80000/-104.76000            | NUN | Nunn                           | CO | 5 minute        | 1638.00  |
| <b>Wind Profiler, Research</b> |     |                                |    |                 |          |
| 39.50920/- 96.13500            |     | Havensville (BLN-9)            | KS | 1 minute        | 387.00   |

| Lat/Lon (dec. deg.)            | Id  | Station Name                     | St | Frequency       | Elev (m) |
|--------------------------------|-----|----------------------------------|----|-----------------|----------|
| 39.79780/- 95.64750            | FAO | Powhattan (BLN-3)                | KS | 1 minute        | 360.00   |
| 39.82920/- 96.10720            |     | Seneca (BLN-5)                   | KS | 1 minute        | 384.00   |
| 39.88690/- 96.51920            |     | Home (BLN-7)                     | KS | 1 minute        | 409.00   |
| 40.05000/- 88.38000            |     | Bondville, Flatlands Observatory | IL | 1 minute        | 212.00   |
| 40.07390/- 95.98890            |     | Humboldt (BLN-1)                 | NE | 1 minute        | 320.00   |
| <b>Rawinsonde, CLASS</b>       |     |                                  |    |                 |          |
| 36.38000/- 92.23000            | HEN | Henderson                        | AR | no set schedule | 175.00   |
| 36.70000/-101.48000            | GUY | Guymon                           | OK | no set schedule | 939.00   |
| 37.05000/- 97.10000            | AKZ | Arkansas City                    | KS | no set schedule | 377.00   |
| 38.64000/- 90.24000            | STL | St. Louis                        | MO | no set schedule | 161.00   |
| 38.82000/- 92.22000            | COU | Columbia                         | MO | no set schedule | 271.00   |
| 38.90000/- 99.32000            | HYS | Hays                             | KS | no set schedule | 626.00   |
| 39.24000/-102.29000            | 3V1 | Burlington                       | CO | no set schedule | 1286.00  |
| 39.83000/- 96.11000            | 62K | Seneca                           | KS | no set schedule | 384.00   |
| 40.19000/- 92.59000            | IRK | Kirksville                       | MO | no set schedule | 291.00   |
| 40.70000/- 99.10000            | EAR | Kearney                          | NE | no set schedule | 662.00   |
| 41.71000/- 91.61000            | IOW | Iowa City                        | IA | no set schedule | 241.00   |
| 42.64000/- 95.21000            | SLB | Storm Lake                       | IA | no set schedule | 430.00   |
| <b>Rawinsonde, NWS</b>         |     |                                  |    |                 |          |
| 32.22000/- 98.18000            | SEP | Stephenville                     | TX | 12 hourly       | 401.70   |
| 32.38000/- 94.72000            | GGG | Longview                         | TX | 12 hourly       | 111.00   |
| 34.73000/- 92.23000            | LIT | Little Rock                      | AR | 12 hourly       | 78.00    |
| 35.23000/-101.70000            | AMA | Amarillo                         | TX | 12 hourly       | 1098.80  |
| 35.23000/- 97.47000            | OUN | Norman                           | OK | 12 hourly       | 362.00   |
| 36.88000/- 93.90000            | UMN | Monett                           | MO | 12 hourly       | 438.90   |
| 37.07000/- 88.77000            | PAH | Paducah                          | KY | 12 hourly       | 120.10   |
| 37.77000/- 99.97000            | DDC | Dodge City                       | KS | 12 hourly       | 787.00   |
| 39.07000/- 95.62000            | TOP | Topeka, Municipal Airport        | KS | 12 hourly       | 267.90   |
| 39.75000/-104.87000            | DEN | Denver                           | CO | 12 hourly       | 1625.00  |
| 40.67000/- 89.68000            | PIA | Peoria                           | IL | 12 hourly       | 200.90   |
| 41.13000/-100.97000            | LBF | North Platte                     | NE | 12 hourly       | 849.00   |
| 41.30000/- 95.90000            | OMA | Omaha                            | NE | 12 hourly       | 299.90   |
| 44.05000/-103.07000            | RAP | Rapid City                       | SD | 12 hourly       | 970.20   |
| 44.38000/- 98.22000            | HON | Huron                            | SD | 12 hourly       | 392.00   |
| 44.48000/- 88.13000            | GRB | Green Bay                        | WI | 12 hourly       | 211.80   |
| <b>Radar, Research Doppler</b> |     |                                  |    |                 |          |
| 35.48000/- 97.81000            | CIM | Cimarron                         | OK | no set schedule | 399.00   |
| 39.46000/- 96.05000            | CP4 | Havensville, NCAR CP-4 radar     | KS | no set schedule | 425.00   |
| 39.71000/- 95.53000            | CP3 | Horton, NCAR CP-3 radar          | KS | no set schedule | 353.00   |
| 39.88000/-104.76000            | MHR | Denver, Mile High Radar          | CO | no set schedule | 1604.00  |
| 40.04000/- 88.28000            | HOT | Champaign                        | IL | no set schedule | 237.00   |

STORM-FEST Operations Summary and Data Inventory

| Lat/Lon (dec. deg.)        | Id        | Station Name                                      | St | Frequency       | Elev (m) |
|----------------------------|-----------|---------------------------------------------------|----|-----------------|----------|
| 40.45000/-104.64000        | CHILL     | Fort Collins (CHILL)                              | CO | no set schedule | 1423.00  |
| <b>USGS Raingauge Data</b> |           |                                                   |    |                 |          |
| 33.43400/- 97.09350        | 07316000  | Gainesville, Red River                            | OK | hourly          | -999.90  |
| 33.49050/- 96.34200        | 07331500  | Denison, Lake Texoma                              | OK | hourly          | -999.90  |
| 34.00420/- 95.22490        | 07336600  | Hugo, Hugo Lake                                   | OK | hourly          | -999.90  |
| 34.01360/- 95.45000        | 07335300  | Unger, Muddy Boggy Creek                          | OK | hourly          | -999.90  |
| 34.06430/- 95.04460        | 07337300  | Wright City, Pine Creek                           | OK | hourly          | -999.90  |
| 34.08350/- 94.41000        | 07338900  | Broken Bow, Broken Bow Lake                       | OK | hourly          | -999.90  |
| 34.13570/- 98.02510        | 07313400  | Waurika, Waurika Lake                             | OK | hourly          | -999.90  |
| 34.14000/- 96.58320        | 07331000  | Dickson, Washita River                            | OK | hourly          | -999.90  |
| 34.16170/- 95.54430        | 07334000  | Farris, Muddy Boggy Creek                         | OK | hourly          | -999.90  |
| 34.21440/- 98.16560        | 07311000  | Walters, East Cache Creek                         | OK | hourly          | -999.90  |
| 34.27440/- 94.38060        | 07338750  | Smithville, Mountain Fork                         | OK | hourly          | -999.90  |
| 34.32290/- 97.14490        | 07329700  | Hoover, Wildhorse Creek                           | OK | hourly          | -999.90  |
| 34.35400/- 96.39550        | 073334200 | Fittstown, Byrds Mill Spring                      | OK | hourly          | -999.90  |
| 34.37450/- 95.21030        | 07335775  | Clayton, Sardis Lake                              | OK | hourly          | -999.90  |
| 34.38040/- 99.05470        | 07305000  | Headrick, North Fork Red River                    | OK | hourly          | -999.90  |
| 34.38160/- 98.59540        | 07307010  | Snyder, Otter Creek                               | OK | hourly          | -999.90  |
| 34.38180/- 94.36450        | 07335700  | Big Cedar, Kiamichi River                         | OK | hourly          | -999.90  |
| 34.45170/- 97.15040        | 07328500  | Pauls Valley, Washita River                       | OK | hourly          | -999.90  |
| 34.46250/- 94.30430        | 07247250  | Page, Black Fork below Big Creek                  | OK | hourly          | -999.90  |
| 34.50160/- 98.07270        | 07327447  | Cement, Little Washita River                      | OK | hourly          | -999.90  |
| 34.53080/- 99.17430        | 07302500  | Lugert, Lake Altus                                | OK | hourly          | -999.90  |
| 34.53330/- 98.13580        | 07327442  | Cyril, Little Washita River                       | OK | hourly          | -999.90  |
| 34.54450/- 95.09200        | 07247500  | Red Oak, Fourche Maline                           | OK | hourly          | -999.90  |
| 34.56100/- 94.43100        | 07248000  | Wister, Wister Lake                               | OK | hourly          | -999.90  |
| 34.57480/- 97.53570        | 07327550  | East Ninnekah, Little Washita River               | OK | hourly          | -999.90  |
| 34.58400/- 96.14360        | 07231500  | Calvin, Canadian River                            | OK | hourly          | -999.90  |
| 35.07020/- 98.33490        | 07325500  | Carnegie, Washita River                           | OK | hourly          | -999.90  |
| 35.12130/- 97.25520        | 07229055  | Norman, Bishop Creek                              | OK | hourly          | -999.90  |
| 35.12240/- 97.28510        | 07229030  | Norman, Merkle Creek                              | OK | hourly          | -999.90  |
| 35.15500/- 95.14210        | 07245000  | Whitefield, Canadian River                        | OK | hourly          | -999.90  |
| 35.15560/- 96.12210        | 07242000  | Wetumka, North Canadian River                     | OK | hourly          | -999.90  |
| 35.17050/- 99.37180        | 07301481  | Sayre, North Fork Red River                       | OK | hourly          | -999.90  |
| 35.17260/- 98.35380        | 07325800  | Eakly, Cobb Creek                                 | OK | hourly          | -999.90  |
| 35.25200/- 99.58080        | 07301420  | Sweetwater, Sweetwater Creek                      | OK | hourly          | -999.90  |
| 35.28430/- 97.39470        | 07241000  | Oklahoma City, N. Canadian R. Blw Lake Overholser | OK | hourly          | -999.90  |
| 35.30010/- 97.11370        | 07241550  | Harrah, North Canadian River                      | OK | hourly          | -999.90  |
| 35.33470/- 97.57260        | 07239500  | El Reno, North Canadian River                     | OK | hourly          | -999.90  |
| 35.34230/- 95.04070        | 07198000  | Gore, Illinois River                              | OK | hourly          | -999.90  |
| 35.37350/- 99.40050        | 07316500  | Cheyenne, Washita River                           | OK | hourly          | -999.90  |
| 35.38540/- 97.21470        | 07242340  | Arcadia, Arcadia Lake                             | OK | hourly          | -999.90  |
| 35.40260/- 96.04060        | 07243500  | Beggs, Deep Fork                                  | OK | hourly          | -999.90  |
| 35.46550/- 96.51140        | 07243000  | Kendrick, Dry Creek                               | OK | hourly          | -999.90  |
| 40.45000/-104.64000        | CHILL     | Fort Collins (CHILL)                              | CO | no set schedule | 1423.00  |

| Lat/Lon (dec. deg.) | Id       | Station Name                                         | St | Frequency | Elev (m) |
|---------------------|----------|------------------------------------------------------|----|-----------|----------|
| 35.48430/- 98.25140 | 07239300 | Watonga, North Canadian River Below<br>Weavers Creek | OK | hourly    | -999.90  |
| 35.49230/- 95.38390 | 07165570 | Haskell, Arkansas River                              | OK | hourly    | -999.90  |
| 35.55140/- 97.25320 | 07160000 | Guthrie, Cimarron River                              | OK | hourly    | -999.90  |
| 35.55160/- 94.50140 | 07197000 | Eldon, Baron Fork                                    | OK | hourly    | -999.90  |
| 35.56520/- 96.17550 | 07165000 | Heyburn, Heyburn Lake                                | OK | hourly    | -999.90  |
| 35.57060/- 97.54510 | 07159100 | Dover, Cimarron River                                | OK | hourly    | -999.90  |
| 35.59090/- 96.54430 | 07161450 | Ripley, Cimarron River                               | OK | hourly    | -999.90  |
| 36.07480/- 94.34190 | 07195500 | Watts, Illinois River                                | OK | hourly    | -999.90  |
| 36.08260/- 96.00220 | 07164500 | Tulsa, Arkansas River                                | OK | hourly    | -999.90  |
| 36.09020/- 96.15080 | 07164200 | Sand Springs, Keystone Lake                          | OK | hourly    | -999.90  |
| 36.11000/- 98.55150 | 07238000 | Seiling, North Canadian River                        | OK | hourly    | -999.90  |
| 36.18260/- 95.41520 | 07176000 | Claremore, Verdigris River                           | OK | hourly    | -999.90  |
| 36.20070/- 94.38240 | 07191220 | Sycamore, Spavinaw Creek                             | OK | hourly    | -999.90  |
| 36.26120/- 99.16410 | 07237500 | Woodward, North Canadian River                       | OK | hourly    | -999.90  |
| 36.28080/- 95.02290 | 07190000 | Langley, Lake O'the Cherokees                        | OK | hourly    | -999.90  |
| 36.30150/- 96.43410 | 07152500 | Ralston, Arkansas River                              | OK | hourly    | -999.90  |
| 36.31000/- 98.52450 | 07158000 | Waynoka, Cimarron River                              | OK | hourly    | -999.90  |
| 36.33140/- 99.34160 | 07236500 | Fort Supply, Fort Supply Lake                        | OK | hourly    | -999.90  |
| 36.37530/- 94.35120 | 07189000 | Tiff City, Elk River                                 | OK | hourly    | -999.90  |
| 36.40190/- 97.18330 | 07151000 | Tonkawa, Salt Fork Arkansas River                    | OK | hourly    | -999.90  |
| 36.43100/- 96.07560 | 07174600 | Okesa, Sand Creek                                    | OK | hourly    | -999.90  |
| 36.43170/-101.29210 | 07232500 | Guymon, Beaver River                                 | OK | hourly    | -999.90  |
| 36.44400/- 98.08080 | 07150000 | Jet, Great Salt Plains Lake                          | OK | hourly    | -999.90  |
| 36.49200/-100.31080 | 07234000 | Beaver, Beaver River                                 | OK | hourly    | -999.90  |
| 36.51050/- 95.35100 | 07171000 | Lenapah, Verdigris River                             | OK | hourly    | -999.90  |
| 36.53130/- 95.57100 | 07174300 | Copan, Copan Lake                                    | OK | hourly    | -999.90  |
| 36.55430/- 94.57260 | 07185000 | Commerce, Neosho River                               | OK | hourly    | -999.90  |

## USGS Stream Flow Gauges

|                     |                                     |    |        |         |
|---------------------|-------------------------------------|----|--------|---------|
| 34.84000/- 98.12000 | Chickasha, STORM-FEST Stream Gage 1 | OK | hourly | -999.90 |
| 34.96000/- 97.90000 | Chickasha, STORM-FEST Stream Gage 2 | OK | hourly | -999.90 |

## Radar, WSR-88D

|                     |      |            |    |                 |        |
|---------------------|------|------------|----|-----------------|--------|
| 34.36000/- 98.98000 | KFDR | Frederick  | OK | no set schedule | 396.00 |
| 35.24000/- 97.46000 | KOUN | Norman     | OK | no set schedule | 362.00 |
| 35.33000/- 97.28000 | KOKC | Twin Lakes | OK | no set schedule | 383.00 |

## Oklahoma ARS

|                     |      |                            |    |          |        |
|---------------------|------|----------------------------|----|----------|--------|
| 34.75390/- 98.08920 | G166 | Little Washita Basin (166) | OK | 5 minute | 390.00 |
| 34.75390/- 97.99390 | G168 | Little Washita Basin (168) | OK | 5 minute | 399.00 |
| 34.75440/- 98.03610 | G167 | Little Washita Basin (167) | OK | 5 minute | 396.00 |

STORM-FEST Operations Summary and Data Inventory

| Lat/Lon (dec. deg.) | Id   | Station Name               | St | Frequency | Elev (m) |
|---------------------|------|----------------------------|----|-----------|----------|
| 34.78330/- 97.93190 | G158 | Little Washita Basin (158) | OK | 5 minute  | 408.00   |
| 34.79310/- 97.98420 | G159 | Little Washita Basin (159) | OK | 5 minute  | 433.00   |
| 34.79750/- 98.08310 | G161 | Little Washita Basin (161) | OK | 5 minute  | 427.00   |
| 34.80140/- 98.03670 | G160 | Little Washita Basin (160) | OK | 5 minute  | 411.00   |
| 34.81330/- 98.14170 | G162 | Little Washita Basin (162) | OK | 5 minute  | 399.00   |
| 34.81750/- 98.19500 | G163 | Little Washita Basin (163) | OK | 5 minute  | 408.00   |
| 34.82610/- 98.26360 | G165 | Little Washita Basin (164) | OK | 5 minute  | 399.00   |
| 34.83640/- 97.91330 | G157 | Little Washita Basin (157) | OK | 5 minute  | 381.00   |
| 34.84060/- 98.03610 | G155 | Little Washita Basin (155) | OK | 5 minute  | 393.00   |
| 34.84250/- 97.95780 | G156 | Little Washita Basin (156) | OK | 5 minute  | 399.00   |
| 34.84500/- 98.07330 | G182 | Little Washita Basin (182) | OK | 5 minute  | 369.00   |
| 34.85530/- 98.13360 | G154 | Little Washita Basin (154) | OK | 5 minute  | 402.00   |
| 34.85640/- 98.19830 | G153 | Little Washita Basin (153) | OK | 5 minute  | 408.00   |
| 34.86080/- 98.25060 | G152 | Little Washita Basin (152) | OK | 5 minute  | 415.00   |
| 34.87970/- 97.91640 | G144 | Little Washita Basin (144) | OK | 5 minute  | 384.00   |
| 34.88360/- 98.07500 | G147 | Little Washita Basin (147) | OK | 5 minute  | 430.00   |
| 34.88420/- 97.97440 | G145 | Little Washita Basin (145) | OK | 5 minute  | 372.00   |
| 34.88580/- 98.02280 | G146 | Little Washita Basin (146) | OK | 5 minute  | 360.00   |
| 34.88920/- 98.30330 | G181 | Little Washita Basin (181) | OK | 5 minute  | 430.00   |
| 34.90080/- 98.12780 | G148 | Little Washita Basin (148) | OK | 5 minute  | 427.00   |
| 34.90140/- 98.18890 | G149 | Little Washita Basin (149) | OK | 5 minute  | 415.00   |
| 34.90580/- 98.25060 | G150 | Little Washita Basin (150) | OK | 5 minute  | 427.00   |
| 34.91330/- 98.29440 | G151 | Little Washita Basin (151) | OK | 5 minute  | 442.00   |
| 34.91580/- 97.91720 | G137 | Little Washita Basin (137) | OK | 5 minute  | 347.00   |
| 34.92690/- 97.96690 | G136 | Little Washita Basin (136) | OK | 5 minute  | 366.00   |
| 34.92750/- 98.01940 | G135 | Little Washita Basin (135) | OK | 5 minute  | 360.00   |
| 34.93500/- 98.07530 | G134 | Little Washita Basin (134) | OK | 5 minute  | 384.00   |
| 34.94170/- 98.17830 | G132 | Little Washita Basin (132) | OK | 5 minute  | 427.00   |
| 34.94190/- 98.12500 | G133 | Little Washita Basin (133) | OK | 5 minute  | 454.00   |
| 34.94940/- 98.23310 | G131 | Little Washita Basin (131) | OK | 5 minute  | 430.00   |
| 34.95640/- 98.28470 | G130 | Little Washita Basin (130) | OK | 5 minute  | 341.00   |
| 34.95860/- 97.89280 | G121 | Little Washita Basin (121) | OK | 5 minute  | 372.00   |
| 34.97110/- 98.01330 | G123 | Little Washita Basin (123) | OK | 5 minute  | 390.00   |
| 34.97390/- 98.05780 | G124 | Little Washita Basin (124) | OK | 5 minute  | 357.00   |
| 34.97750/- 97.95220 | G122 | Little Washita Basin (122) | OK | 5 minute  | 421.00   |
| 34.98560/- 98.12750 | G125 | Little Washita Basin (125) | OK | 5 minute  | 369.00   |
| 35.01250/- 97.95250 | G111 | Little Washita Basin (111) | OK | 5 minute  | 378.00   |
| 35.01390/- 98.37640 | G110 | Little Washita Basin (110) | OK | 5 minute  | 331.00   |
| 35.03611/- 97.90611 | G230 | Chickasha                  | OK | 5 minute  | 331.00   |
| 35.03694/- 97.91667 | G401 | Chickasha                  | OK | 5 minute  | 331.00   |
| 35.03694/- 97.91583 | G402 | Chickasha                  | OK | 5 minute  | 331.00   |

Surface Airways Observations

|                     |     |                                   |    |        |        |
|---------------------|-----|-----------------------------------|----|--------|--------|
| 32.21667/- 98.18333 | SEP | STEPHENVILLE, WSMO                | TX | hourly | 398.00 |
| 32.30000/- 86.40000 | MGM | MONTGOMERY, DANNELLY FIELD        | AL | hourly | 64.00  |
| 32.31667/- 90.08333 | JAN | JACKSON, THOMPSON FIELD           | MS | hourly | 90.00  |
| 32.33333/-104.26667 | CNM | CARLSBAD, CAVERN CITY AIR TERM NM |    | hourly | 986.00 |

| Lat/Lon (dec. deg.) | Id  | Station Name                       | St | Frequency | Elev (m) |
|---------------------|-----|------------------------------------|----|-----------|----------|
| 32.33333/- 88.75000 | MEI | MERIDIAN, KEY FIELD                | MS | hourly    | 89.00    |
| 32.41667/- 99.68333 | ABI | ABILENE, MUNICIPAL ARPT            | TX | hourly    | 545.00   |
| 32.43333/- 99.85000 | DYS | ABILENE, DYESS AFB                 | TX | hourly    | 544.00   |
| 32.46667/- 93.81667 | SHV | SHREVEPORT, WSO AP                 | LA | hourly    | 77.00    |
| 32.51667/- 92.05000 | MLU | MONROE, MUNICIPAL ARPT             | LA | hourly    | 23.00    |
| 32.55000/- 88.56667 | NMM | MERIDIAN, NAAS                     | MS | hourly    | 84.00    |
| 32.68333/-103.20000 | HOB | HOBBS, FAA AIRPORT                 | NM | hourly    | 1114.00  |
| 32.68333/- 96.86667 | RBD | DALLAS, REDBIRD ARPT               | TX | hourly    | 209.00   |
| 32.73333/- 96.96667 | NBE | DALLAS, HENSLEY FLD NAS            | TX | hourly    | 149.00   |
| 32.78333/- 98.06667 | MWL | MINERAL WELLS, MUNICIPAL AP        | TX | hourly    | 283.00   |
| 32.81667/- 97.35000 | FTW | FORT WORTH, MEACHAM FIELD          | TX | hourly    | 204.00   |
| 32.85000/- 96.85000 | DAL | DALLAS, LOVE FIELD                 | TX | hourly    | 159.00   |
| 32.90000/- 97.03333 | DFW | DALLAS/FORT WORTH, Regional Arpt   | TX | hourly    | 167.00   |
| 32.90000/- 87.25000 | CKL | CENTREVILLE, WSMO                  | AL | hourly    | 138.00   |
| 32.96667/- 96.83333 | ADS | DALLAS, ADDISON ARPT               | TX | hourly    | 209.00   |
| 33.21667/- 92.80000 | ELD | ELDORADO, GOODWIN FIELD            | AR | hourly    | 76.00    |
| 33.23333/- 87.61667 | TCL | TUSCALOOSA, MUNICIPAL AP           | AL | hourly    | 51.00    |
| 33.30000/-104.53333 | ROW | INDUSTRIAL AIR PARK                | NM | hourly    | 1113.00  |
| 33.45000/- 94.00000 | TXK | TEXARKANA, FAA AIRPORT             | AR | hourly    | 110.00   |
| 33.50000/- 90.08333 | GWO | GREENWOOD, FAA AIRPORT             | MS | hourly    | 47.00    |
| 33.56667/- 86.75000 | BHM | BIRMINGHAM, MUNICIPAL ARPT         | AL | hourly    | 192.00   |
| 33.65000/-101.81667 | LBB | LUBBOCK, REGIONAL ARPT             | TX | hourly    | 993.00   |
| 33.96667/- 98.48333 | SPS | WICHITA FALLS, MUNICIPAL ARPT      | TX | hourly    | 306.00   |
| 34.10000/-105.68333 | 4CR | CORONA, 11 SSW                     | NM | hourly    | 1981.00  |
| 34.26667/- 88.76667 | TUP | TUPELO, C D LEMONS ARPT            | MS | hourly    | 107.00   |
| 34.30000/- 97.01667 | ADM | ARDMORE, MUNICIPAL AP              | OK | hourly    | 240.00   |
| 34.38333/-103.31667 | CVS | CLOVIS, CANNON AFB                 | NM | hourly    | 1309.00  |
| 34.43333/-100.28333 | CDS | CHILDRESS, FCWOS AP                | TX | hourly    | 594.00   |
| 34.65000/- 86.76667 | HSV | HUNTSVILLE, Madison County JETPLEX | AL | hourly    | 192.00   |
| 34.73333/- 92.23333 | LIT | LITTLEROCK, ADAMS FIELD            | AR | hourly    | 84.00    |
| 34.75000/- 87.61667 | MSL | MUSCLE SHOALS, FAA AIRPORT         | AL | hourly    | 164.00   |
| 34.88333/- 95.78333 | MLC | MCALESTER, MUNICIPAL AP            | OK | hourly    | 231.00   |
| 35.00000/- 99.05000 | HBR | HOBART, MUNICIPAL AP               | OK | hourly    | 473.00   |
| 35.05000/- 90.00000 | MEM | MEMPHIS, WSCMO AP                  | TN | hourly    | 82.00    |
| 35.23333/-101.70000 | AMA | AMARILLO, INT'L ARPT               | TX | hourly    | 1094.00  |
| 35.33333/- 94.36667 | FSM | FORT SMITH, MUNICIPAL ARPT         | AR | hourly    | 141.00   |
| 35.35000/- 99.20000 | CSM | CLINTON, SHERMAN AP                | OK | hourly    | 595.00   |
| 35.40000/- 97.60000 | OKC | OKLAHOMA CITY, WSFO AP             | OK | hourly    | 391.00   |
| 35.53333/- 97.63333 | PWA | OKLAHOMA CITY, Wiley Post Arpt     | OK | hourly    | 396.00   |
| 35.60000/- 88.91667 | MKL | JACKSON, FCWOS AP                  | TN | hourly    | 131.00   |
| 35.65000/-105.15000 | LVS | LAS VEGAS, FAA AIRPORT             | NM | hourly    | 2092.00  |
| 36.01667/-102.55000 | DHT | DALHART, MUNICIPAL AP              | TX | hourly    | 1216.00  |
| 36.01667/- 89.40000 | DYR | DYERSBURG, MUNICIPAL AP            | TN | hourly    | 103.00   |
| 36.11667/- 86.68333 | BNA | NASHVILLE, METRO ARPT              | TN | hourly    | 181.00   |
| 36.16667/- 94.11667 | ASG | SPRINGDALE, MUNICIPAL ARPT         | AR | hourly    | 413.00   |
| 36.20000/- 95.90000 | TUL | TULSA, WSO AP                      | OK | hourly    | 203.00   |
| 36.26667/- 93.15000 | HRO | HARRISON, FAA AIRPORT              | AR | hourly    | 418.00   |

STORM-FEST Operations Summary and Data Inventory

| Lat/Lon (dec. deg.) | Id  | Station Name                       | St | Frequency | Elev (m) |
|---------------------|-----|------------------------------------|----|-----------|----------|
| 36.30000/- 99.76667 | GAG | GAGE, FAA AIRPORT                  | OK | hourly    | 667.00   |
| 36.33333/- 97.91667 | END | ENID, VANCE AFB                    | OK | hourly    | 121.00   |
| 36.41667/-105.56667 | E23 | TAOS                               | NM | hourly    | 2122.00  |
| 36.45000/-105.66667 | SKX | TAOS, MUNI AP                      | NM | hourly    | 2161.00  |
| 36.45000/-103.15000 | CAO | CLAYTON, MUNICIPAL AIR PARK        | NM | hourly    | 1515.00  |
| 36.73333/- 97.10000 | PNC | PONCA CITY, FAA AIRPORT            | OK | hourly    | 304.00   |
| 36.75000/- 96.00000 | BVO | BARTLESVILLE, Frank Phillips Field | OK | hourly    | 2156.00  |
| 36.96667/- 86.43333 | BWG | BOWLING GREEN, FAA AP              | KY | hourly    | 162.00   |
| 37.00000/-101.88333 | 1KS | ELKHART, AMOS                      | KS | hourly    | 1105.00  |
| 37.05000/-100.96667 | LBL | LIBERAL, MUNICIPAL AIRPORT         | KS | hourly    | 878.00   |
| 37.15000/- 94.50000 | JLN | JOPLIN, FAA AIRPORT                | MO | hourly    | 298.00   |
| 37.23333/- 93.38333 | SGF | SPRINGFIELD, REGIONAL AP           | MO | hourly    | 387.00   |
| 37.23333/- 89.56667 | CGI | CAPE GIRARDEAU, MUNICIPAL AP       | MO | hourly    | 103.00   |
| 37.25000/-104.33333 | TAD | TRINIDAD, LAS ANIMAS COUNTY AP     | CO | hourly    | 1751.00  |
| 37.45000/-105.86667 | ALS | ALAMOSA, BERGMAN FIELD             | CO | hourly    | 2298.00  |
| 37.65000/- 97.43333 | ICT | WICHITA, MID-CONTINENT ARPT        | KS | hourly    | 402.00   |
| 37.66667/- 95.48333 | CNU | CHANUTE, FAA AIRPORT               | KS | hourly    | 298.00   |
| 37.75000/- 97.23333 | 3KM | WICHITA, JABARA ARPT               | KS | hourly    | 433.00   |
| 37.75000/- 92.10000 | TBN | FORT LEONARD WOOD                  | MO | hourly    | 335.00   |
| 37.75000/- 89.00000 | MWA | MARION, WILLIAMSON CO AP           | IL | hourly    | 143.00   |
| 37.76667/- 99.96667 | DDC | DODGE CITY, MUNICIPAL AP           | KS | hourly    | 786.00   |
| 37.93333/-100.71667 | GCK | GARDEN CITY, 9 ESE                 | KS | hourly    | 878.00   |
| 38.05000/-103.51667 | LHX | LA JUNTA, 4 NNE                    | CO | hourly    | 1277.00  |
| 38.05000/- 87.53333 | EVV | EVANSVILLE, DRESS Regional Arpt    | IN | hourly    | 121.00   |
| 38.06667/- 97.86667 | HUT | HUTCHINSON, MUNICIPAL AP           | KS | hourly    | 464.00   |
| 38.08333/-102.61667 | 4LJ | LAMAR                              | CO | hourly    | 1105.00  |
| 38.11667/- 91.76667 | VIH | VICHY, ROLLA NAT'L ARPT            | MO | hourly    | 350.00   |
| 38.28333/-104.51667 | PUB | PUEBLO, MEMORIAL AP                | CO | hourly    | 1420.00  |
| 38.66667/- 90.65000 | SUS | ST LOUIS, SPIRIT OF ST LOUIS AP    | MO | hourly    | 142.00   |
| 38.75000/- 90.36667 | STL | ST LOUIS, LAMBERT INT'L ARPT       | MO | hourly    | 172.00   |
| 38.80000/- 97.65000 | SLN | SALINA, FAA AIRPORT                | KS | hourly    | 384.00   |
| 38.81667/-104.71667 | COS | COLORADO SPRINGS, MUNICIPAL AP     | CO | hourly    | 1857.00  |
| 38.81667/- 92.21667 | COU | COLUMBIA, REGIONAL ARPT            | MO | hourly    | 272.00   |
| 38.85000/- 94.73333 | OJC | OLATHE, Johnson County Exec AP     | KS | hourly    | 339.00   |
| 38.86667/- 98.81667 | RSL | RUSSELL, MUNICIPAL ARPT            | KS | hourly    | 568.00   |
| 38.88333/- 90.05000 | ALN | ALTON, ST LOUIS REGIONAL AP        | IL | hourly    | 179.00   |
| 38.95000/- 95.66667 | FOE | TOPEKA, FORBES FIELD               | KS | hourly    | 100.00   |
| 38.96667/-104.81667 | AFF | USAF ACADEMY, AF                   | CO | hourly    | 2003.00  |
| 39.06667/- 95.63333 | TOP | TOPEKA, MUNICIPAL ARPT             | KS | hourly    | 269.00   |
| 39.11667/- 94.60000 | MKC | KANSAS CITY, MUNICIPAL ARPT        | MO | hourly    | 227.00   |
| 39.15000/- 96.66667 | MHK | MANHATTAN, MUNICIPAL AP            | KS | hourly    | 318.00   |
| 39.18333/-103.70000 | LIC | LIMON                              | CO | hourly    | 1694.00  |
| 39.31667/- 94.71667 | MCI | KANSAS CITY, INTL ARPT             | MO | hourly    | 297.00   |
| 39.36667/-101.70000 | GLD | GOODLAND, RENNER FIELD             | KS | hourly    | 1111.00  |
| 39.38333/- 99.83333 | HLC | HILL CITY, 1NE                     | KS | hourly    | 670.00   |
| 39.45000/- 87.30000 | HUF | TERRE HAUTE, Hulman Regional AP    | IN | hourly    | 181.00   |
| 39.55000/- 97.65000 | CNK | CONCORDIA, BLOSSER MUNI AP         | KS | hourly    | 448.00   |

| Lat/Lon (dec. deg.) | Id  | Station Name                      | St | Frequency | Elev (m) |
|---------------------|-----|-----------------------------------|----|-----------|----------|
| 39.56667/-104.85000 | APA | ENGLEWOOD, CENTENNIAL AP          | CO | hourly    | 1776.00  |
| 39.73333/- 86.26667 | IND | INDIANAPOLIS, INT'L ARPT          | IN | hourly    | 241.00   |
| 39.76667/-104.86667 | DEN | DENVER, STAPLETON INT'L AP        | CO | hourly    | 1611.00  |
| 39.90000/-105.11667 | BJC | BROOMFIELD, Jefferson County AP   | CO | hourly    | 1719.00  |
| 39.93333/- 91.20000 | UIN | QUINCY, FAA AIRPORT               | IL | hourly    | 232.00   |
| 40.16667/-103.21667 | AKO | AKRON, WASHINGTON CO AP           | CO | hourly    | 1421.00  |
| 40.20000/- 87.60000 | DNV | DANVILLE, VERMILION CO AP         | IL | hourly    | 211.00   |
| 40.21667/-100.58333 | MCK | MCCOOK                            | NE | hourly    | 785.00   |
| 40.41667/- 86.93333 | LAF | WEST LAFAYETTE, Purdue Univ AP    | IN | hourly    | 182.00   |
| 40.45000/-105.01667 | FNL | LOVELAND, Ft Collins-Loveland AP  | CO | hourly    | 1528.00  |
| 40.58333/-105.08333 | FCL | FORT COLLINS                      | CO | hourly    | 1525.00  |
| 40.61667/- 93.95000 | 3OI | LAMONI                            | IA | hourly    | 344.00   |
| 40.66667/- 89.68333 | PIA | PEORIA, GREATER PEORIA ARPT       | IL | hourly    | 205.00   |
| 40.78333/- 91.11667 | BRL | BURLINGTON, MUNICIPAL AP          | IA | hourly    | 212.00   |
| 40.85000/- 96.75000 | LNK | LINCOLN, MUNICIPAL ARPT           | NE | hourly    | 364.00   |
| 40.96667/- 98.31667 | GRI | GRAND ISLAND, WSO AP              | NE | hourly    | 562.00   |
| 41.10000/-102.98333 | SNY | SIDNEY, 3 S                       | NE | hourly    | 1313.00  |
| 41.10000/- 92.45000 | OTM | OTTUMWA, INDUSTRIAL AP            | IA | hourly    | 256.00   |
| 41.11667/- 95.91667 | OFF | BELLEVUE, OFFUTT AFB              | NE | hourly    | 97.00    |
| 41.13333/-100.68333 | LBF | NORTH PLATTE, LEE BIRD FLD        | NE | hourly    | 847.00   |
| 41.30000/- 95.90000 | OMA | OMAHA, EPPELY AIR FIELD           | NE | hourly    | 298.00   |
| 41.31667/-105.68333 | LAR | LARAMIE, GENERAL BREES FIELD      | WY | hourly    | 2214.00  |
| 41.36667/- 96.01667 | OVN | OMAHA, WSFO                       | NE | hourly    | 398.00   |
| 41.36667/- 88.61667 | MMO | MARSEILLES, WSMO                  | IL | hourly    | 198.00   |
| 41.43333/- 99.65000 | BBW | BROKEN BOW, MUNICIPAL AP          | NE | hourly    | 773.00   |
| 41.53333/- 93.65000 | DSM | DES MOINES, INTL AP               | IA | hourly    | 294.00   |
| 41.70000/- 86.31667 | SBN | SOUTH BEND, WSO AP                | IN | hourly    | 238.00   |
| 41.86667/-103.60000 | BFF | SCOTTSBLUFF, COUNTYARPT           | NE | hourly    | 1203.00  |
| 41.88333/- 91.70000 | CID | CEDARRAPIDS, MUNICIPALAP          | IA | hourly    | 269.00   |
| 41.98333/- 97.43333 | OFK | NORFOLK, WSOAP                    | NE | hourly    | 471.00   |
| 42.00000/- 87.88333 | ORD | CHICAGO, O'HAREINTLAP             | IL | hourly    | 204.00   |
| 42.05000/-102.80000 | AIA | ALLIANCE, MUNICIPALAP             | NE | hourly    | 1235.00  |
| 42.13333/- 86.43333 | BEH | BENTONHARBOR, ROSSFIELD           | MI | hourly    | 191.00   |
| 42.20000/- 89.10000 | RFD | ROCKFORD, WSOAP                   | IL | hourly    | 223.00   |
| 42.40000/- 96.38333 | SUX | SIOUX CITY, WSOAP                 | IA | hourly    | 339.00   |
| 42.40000/- 90.70000 | DBQ | DUBUQUE, MUNICIPAL AP             | IA | hourly    | 321.00   |
| 42.55000/- 92.40000 | ALO | WATERLOO, MUNICIPAL AP            | IA | hourly    | 265.00   |
| 42.58333/- 99.98333 | ANW | AINSWORTH, MUNICIPAL AP           | NE | hourly    | 788.00   |
| 42.75000/-105.38333 | 4DG | DOUGLAS                           | WY | hourly    | 1464.00  |
| 42.83333/-103.08333 | CDR | CHADRON, MUNICIPAL AP             | NE | hourly    | 1010.00  |
| 42.86667/-100.55000 | VTN | VALENTINE, WSO AP                 | NE | hourly    | 788.00   |
| 42.95000/- 87.90000 | MKE | MILWAUKEE, General Mitchell Field | WI | hourly    | 210.00   |
| 43.13333/- 89.33333 | MSN | MADISON, DANE CO Regional Arpt    | WI | hourly    | 262.00   |
| 43.15000/- 93.33333 | MCW | MASON CITY, AP                    | IA | hourly    | 363.00   |
| 43.16667/- 95.15000 | 3SE | SPENCER                           | IA | hourly    | 405.00   |
| 43.16667/- 86.23333 | MKG | MUSKEGON, COUNTY ARPT             | MI | hourly    | 192.00   |
| 43.40000/- 94.75000 | EST | ESTHERVILLE, MUNICIPAL ARPT       | IA | hourly    | 417.00   |

STORM-FEST Operations Summary and Data Inventory

| Lat/Lon (dec. deg.) | Id  | Station Name                             | St | Frequency | Elev (m) |
|---------------------|-----|------------------------------------------|----|-----------|----------|
| 43.56667/- 96.73333 | FSD | SIOUX FALLS, FOSS FIELD                  | SD | hourly    | 435.00   |
| 43.65000/- 94.41667 | FRM | FAIRMONT, MUNICIPAL AP                   | MN | hourly    | 353.00   |
| 43.68333/- 93.36667 | AEL | ALBERT LEA, MUNICIPAL ARPT               | MN | hourly    | 385.00   |
| 43.73333/-103.61667 | OV1 | CUSTER, COUNTY AP                        | SD | hourly    | 516.00   |
| 43.76667/- 99.31667 | 9V9 | CHAMBERLAIN, MUNICIPAL AP                | SD | hourly    | 515.00   |
| 43.86667/- 91.25000 | LSE | LA CROSSE, MUNICIPAL ARPT                | WI | hourly    | 200.00   |
| 43.91667/- 92.50000 | RST | ROCHESTER, WSO AP                        | MN | hourly    | 392.00   |
| 44.05000/-103.06667 | RAP | RAPID CITY, REGIONAL ARPT                | SD | hourly    | 965.00   |
| 44.06667/-101.65000 | P05 | PHILIP, 2 N                              | SD | hourly    | 683.00   |
| 44.26667/- 88.51667 | ATW | APPLETON, Outagamie County Arpt          | WI | hourly    | 263.00   |
| 44.33333/- 93.31667 | FBL | FARIBAULT, MUNICIPAL ARPT                | MN | hourly    | 323.00   |
| 44.38333/-100.28333 | PIR | PIERRE, FAA AIRPORT                      | SD | hourly    | 526.00   |
| 44.38333/- 98.21667 | HON | HURON, REGIONAL ARPT                     | SD | hourly    | 391.00   |
| 44.45000/- 95.81667 | MML | MARSHALL, RYAN FIELD                     | MN | hourly    | 360.00   |
| 44.48333/- 88.13333 | GRB | GREENBAY, Austin Straubel Field          | WI | hourly    | 211.00   |
| 44.55000/- 95.08333 | RWF | REDWOOD FALLS, MUNI ARPT                 | MN | hourly    | 312.00   |
| 44.83333/- 93.45000 | FCM | MINNEAPOLIS, FLYING CLOUD AP             | MN | hourly    | 276.00   |
| 44.86667/- 91.48333 | EAU | EAU CLAIRE, FAA AIRPORT                  | WI | hourly    | 271.00   |
| 44.88333/- 93.21667 | MSP | MINNEAPOLIS, INT'L ARPT                  | MN | hourly    | 262.00   |
| 44.91667/- 97.15000 | ATY | WATERTOWN, MUNICIPAL AP                  | SD | hourly    | 532.00   |
| 44.91667/- 89.61667 | AUW | WAUSAU, FAA AIRPORT                      | WI | hourly    | 365.00   |
| 44.91667/- 87.41667 | SUE | STURGEON Bay, Door Cty<br>Cherry Land Ap | WI | hourly    | 220.00   |

Flatlands Observatory Surfobs

|                     |     |                                  |    |          |        |
|---------------------|-----|----------------------------------|----|----------|--------|
| 39.79000/- 88.29000 | TUS | Tuscola                          | IL | 1 minute | 203.00 |
| 40.01000/- 88.65000 | ALP | Allerpark                        | IL | 1 minute | 208.00 |
| 40.02000/- 88.07000 | SID | Sidney                           | IL | 1 minute | 201.00 |
| 40.05000/- 88.38000 | FAO | Bondville, Flatlands Observatory | IL | 1 minute | 212.00 |
| 40.17000/- 88.16000 | URB | Urbana                           | IL | 1 minute | 219.00 |
| 40.19000/- 88.56000 | MAN | Mansfield                        | IL | 1 minute | 221.00 |

Rawinsonde, Other

|                     |     |                                  |    |             |        |
|---------------------|-----|----------------------------------|----|-------------|--------|
| 40.04000/- 88.27000 | WIL | Bondville, Flatlands Observatory | IL | no schedule | 218.00 |
|---------------------|-----|----------------------------------|----|-------------|--------|

Rawinsonde, Military

|                     |     |               |    |           |        |
|---------------------|-----|---------------|----|-----------|--------|
| 34.39000/- 98.24000 | FSI | Fort Sill, OK | OK | 12 hourly | 360.00 |
|---------------------|-----|---------------|----|-----------|--------|

USGS Distrometers

|                     |     |                                    |    |           |         |
|---------------------|-----|------------------------------------|----|-----------|---------|
| 35.05000/- 97.92000 | 003 | Chickasha, STORM-FEST distrometers | OK | 15 minute | -999.90 |
|---------------------|-----|------------------------------------|----|-----------|---------|

---

**U.S. Weather Research Program**  
**STORM-FEST Operations Summary and Data Inventory**

## **Appendix B**

## Appendix B: The MAMS and Wildfire ER-2 Aircraft Data for STORM-FEST

### "The MAMS and Wildfire ER-2 Aircraft Data for STORM-FEST"

Gary J. Jedlovec, NASA/Marshall

NASA's role in STORM-FEST was one of collecting aircraft remote sensing measurements during the field phase of the program and to participate in research supporting the use of these measurements to address specific STORM-FEST objectives. The ER-2 high altitude platform was used with a suite of advanced visible, infrared, and microwave instruments to measure temperature, humidity, ozone, precipitation, and atmospheric electric fields. These measurements were to demonstrate prototype observing capabilities and to study the structure and dynamics of winter storms and mesoscale events. The following information highlights data from two of the six instruments flown on the ER-2, namely, the Wildfire spectrometer and the Multispectral Atmospheric Mapping Sensor (MAMS).

#### DATA COLLECTION OBJECTIVES

The Wildfire and MAMS spectrometers were used during the STORM-FEST field program to support two general research topics which are funded by NASA Headquarters: 1) investigate the variability of upper tropospheric/lower stratospheric ozone and 2) study the structure and dynamics of jet streaks and associated gravity waves.

#### Wildfire

The newly developed Wildfire spectrometer was flown aboard the NASA ER-2 to collect a variety of unique high resolution measurements in support of STORM-FEST. This work focuses on the feasibility of using passive infrared techniques to detect small scale variations in the ozone distribution important to the study of jet streaks and mid-latitude storm systems. The specific goals are to:

- 1) collect high quality Wildfire data in conjunction with other *in situ* and remote measurements available during the STORM-FEST field phase (1 February-15 March 1992),
- 2) develop algorithms for retrieval of the ozone variability below the flight altitude, compare and integrate the results with total column ozone from TOMS and HIRS, and
- 3) use the ozone information, along with water vapor imagery, to better understand the 3-dimensional structure and dynamics of jet streaks and frontal systems in a case study investigation.

The first objective was successfully completed during the field phase of this study. A high quality data set now exists and will be used to address the latter two objectives.

The NASA ER-2 aircraft flew at an altitude of 20 km during STORM-FEST, slightly below the climatological ozone maximum, yet far above the tropopause. The opportunity to fly the Wildfire instrument at that altitude over active frontal disturbances to observe ozone and water vapor at high resolutions will prove to be very instructive. By comparing the Wildfire products to TOMS- and/or HIRS-derived total ozone estimates, two layers of ozone information can be defined (above and below 20 km), which will help to resolve the questions raised by previous case studies. Obtaining these measurements within the data-rich context of STORM-FEST is especially valuable in refining our understanding of frontal zone and jet streak dynamics, and how they contribute to the total ozone signatures being observed from satellite orbit. Although the usual derivation of total ozone content uses measurements in the ultraviolet portion of the spectrum, the use of infrared measurements to estimate total column ozone is not new. The Wildfire spectrometer presents an opportunity to apply several new techniques to the infrared retrieval problem.

#### Multispectral Atmospheric Mapping Sensor (MAMS)

The main science objective with MAMS for STORM-FEST is the detection and diagnostic analysis of water vapor and cloud signatures related to gravity waves. Gravity waves are often generated by intense convective activity or by the propagation of an unbalanced jet streak through an upper-level trough. The analysis of the observable parameters of these wave features is important to understanding their initiation and role in the dynamics of mid-latitude weather systems. To achieve this objective, the ER-2 made several flights over intense storm systems. An additional flight was made over the exit region of a rapidly propagating jet streak. Data collected

from MAMS will be used to identify any discernible gravity wave features present in cloud tops or water vapor imagery ahead of significant storm features. The MAMS data will be used to characterize the structure of these features, determine propagation rates, and to derive relative and absolute moisture parameters associated with these features. These parameters will allow for a quantitative analysis of the moisture variability associated with these features.

## AIRCRAFT INSTRUMENTATION

### Wildfire (a.k.a., the MODIS-N Airborne Simulator, MAS)

The Wildfire spectrometer is a 50 channel airborne scanner that senses reflected and upwelling radiation from the earth and atmosphere in fairly narrow, uniformly spaced regions the near-infrared and thermal infrared spectrum (from 0.70 to 12.7 micrometers). The Wildfire was flown on a NASA ER-2 high altitude aircraft at a nominal altitude of 20 km during STORM-FEST, providing a horizontal ground resolution of each field-of-view of about 50m at nadir. From this altitude, the width of the entire cross path field-of-view scanned by the sensor is roughly 37 km, thereby providing detailed resolution of atmospheric and surface features across the swath width and along the aircraft flight track. The Wildfire design is based on that of other instruments developed by Daedalus Enterprises, Inc. for visible and infrared mapping. It shares the same scan head, digitizer, tape system and supporting electronics as other airborne scanners for the ER-2, including the MAMS. The difference in airborne scanners lies in the different spectrometers and therefore provide different spectral capabilities. The Wildfire channels used during STORM-FEST are presented below. The primary channels of interest are the thermal infrared channels (8-12). These channels have varying sensitivity to water vapor and ozone absorption and will be used to retrieve total ozone content in a column of the atmosphere below the aircraft. The horizontal distribution of this parameter will provide the basis for the case study analysis. The visible channels will serve to identify surface and cloud features of interest. The mid-infrared channels became unusable because of a leak which developed in the dewar. Channel 1 is used as a bit bucket for the least significant bits (9 and 10) of the 10 bit digitized data of channels 9-12.

## Selected Wildfire Channels for STORM-FEST

| Channel | Wavelength | Absorbing Constituents/Use                    |
|---------|------------|-----------------------------------------------|
|         | μm         |                                               |
| 1       | -          | Bit bucket for ch 9-12 least significant bits |
| 2       | 0.68       | Broad band visible-near infrared              |
| 3       | 1.64       | Reflective infrared                           |
| 4       | 1.98       | Reflective infrared                           |
| 5       | 3.75       | Bad dewar, no data                            |
| 6       | 4.54       | Bad dewar, no data                            |
| 7       | 4.70       | Bad dewar, no data                            |
| 8       | 9.20       | Ozone absorption (weak)                       |
| 9       | 10.00      | Ozone absorption (weak)                       |
| 10      | 9.60       | Ozone absorption (strong)                     |
| 11      | 10.95      | Clean window                                  |
| 12      | 12.45      | Water vapor (weak)                            |

## Multispectral Atmospheric Mapping Sensor (MAMS)

The MAMS is a multispectral scanner which measures reflected radiation from the Earth's surface and clouds in eight visible/ near-infrared bands, and thermal emission from the earth's surface, clouds, and atmospheric constituents (primarily water vapor) in four infrared bands. The MAMS was flown on the same NASA ER-2 high altitude aircraft as the Wildfire but not at the same time. The larger aperture of MAMS produced a single field of view resolution of 100m at nadir. The width of the entire cross path field-of-view scanned by the sensor is still 37 km, thereby providing detailed resolution of atmospheric and surface features across the swath width and along the aircraft flight track.

The infrared channels from MAMS are similar to those from the AVHRR and VAS sensors on existing weather satellites. The 11 micrometer channel of MAMS and VAS are very similar while that of the AVHRR is narrower and shifted towards shorter wavelengths. The 12 micrometer channel of AVHRR is positioned near 11.8 micrometers with a band width about twice

that of MAMS and VAS (which are centered at longer wavelengths). The 12 micrometer channels measure upwelling radiation where water vapor and other constituent absorption (particularly, by the Q-branch of CO<sub>2</sub> at 792 cm<sup>-1</sup>) is more significant. The spectral differences of the 12 micrometer channels produce small differences in brightness temperatures for VAS and MAMS, but a somewhat larger differences between AVHRR and MAMS (or VAS).

For STORM-FEST, the 6.5 micrometer channel was used in place of the 3.7 micrometer channel to support the water vapor mapping and gravity wave activity. The MAMS re-router card was used to provide channels 9-12 at 10 bit resolution, with the least significant bits going in place of channel 1. When the 10 bit data is reconstructed, the two last significant bits will provide additional sensitivity to small amplitude variations in the scene data.

#### MAMS Channels for STORM-FEST

| Channel | Wavelength<br>μm         | <u>Visible</u> |                              |                          | <u>Infrared</u> |
|---------|--------------------------|----------------|------------------------------|--------------------------|-----------------|
|         |                          | <u>Channel</u> | <u>Central</u><br>Wavelength | <u>Bandwidth</u>         |                 |
| 1       | 0.42 - 0.45              |                |                              |                          |                 |
| 2       | 0.45 - 0.52 <sup>1</sup> |                |                              |                          |                 |
| 3       | 0.52 - 0.60 <sup>1</sup> |                |                              |                          |                 |
| 4       | 0.60 - 0.67              |                |                              |                          |                 |
| 5       | 0.63 - 0.73 <sup>1</sup> | 9              | 6.54                         | 6.28 - 6.98 <sup>2</sup> |                 |
| 6       | 0.69 - 0.83              | 10             | 6.54                         | 6.28 - 6.98 <sup>2</sup> |                 |
| 7       | 0.76 - 0.99 <sup>1</sup> | 11             | 11.12                        | 10.55 - 12.24            |                 |
| 8       | 0.83 - 1.05              | 12             | 12.56                        | 12.32 - 12.71            |                 |

<sup>1</sup>Similar to Landsat TM channel.

<sup>2</sup>Different channel gain and offsets.

## DATA FOR STORM-FEST

### ER-2 Flights

The NASA ER-2 aircraft flew in support of the STORM-FEST field program from 13 February through 15 March 1992. The plane was deployed out of Ellington Field, just south of Houston, Texas. A total of 11 flights were made during the deployment, 8 of which directly supported the STORM-FEST objectives. The table below lists all the ER-2 STORM-FEST flights, including the Wildfire/MAMS flights. The attached figures show the precise location of the aircraft flight tracks during the specific missions. The flight numbers and times are included in the legend of each map. Two of the flights with the Wildfire spectrometer (14/17 February) were in direct support of the ozone variability objectives. The Wildfire spectrometer was also flown on three other supporting missions. Six missions were flown with the MAMS, one (11 March) was in direct support of the gravity wave objectives.

### Data Quality

The utility of a data set to meet a specific science objective is heavily dependent on data quality and whether the data set captured the phenomenon of interest. Instrument data quality is a function of a number of factors including instrument noise (both random and systematic), quality of the calibration data (directly affects relative and absolute calibration accuracy), appropriateness of channel gain/offset settings (affects channel sensitivity dynamic range), the amount of missing data, and other data peculiarities. In general, data is of good quality and the MAMS data is very good.

### Wildfire and MAMS Flights for STORM-FEST

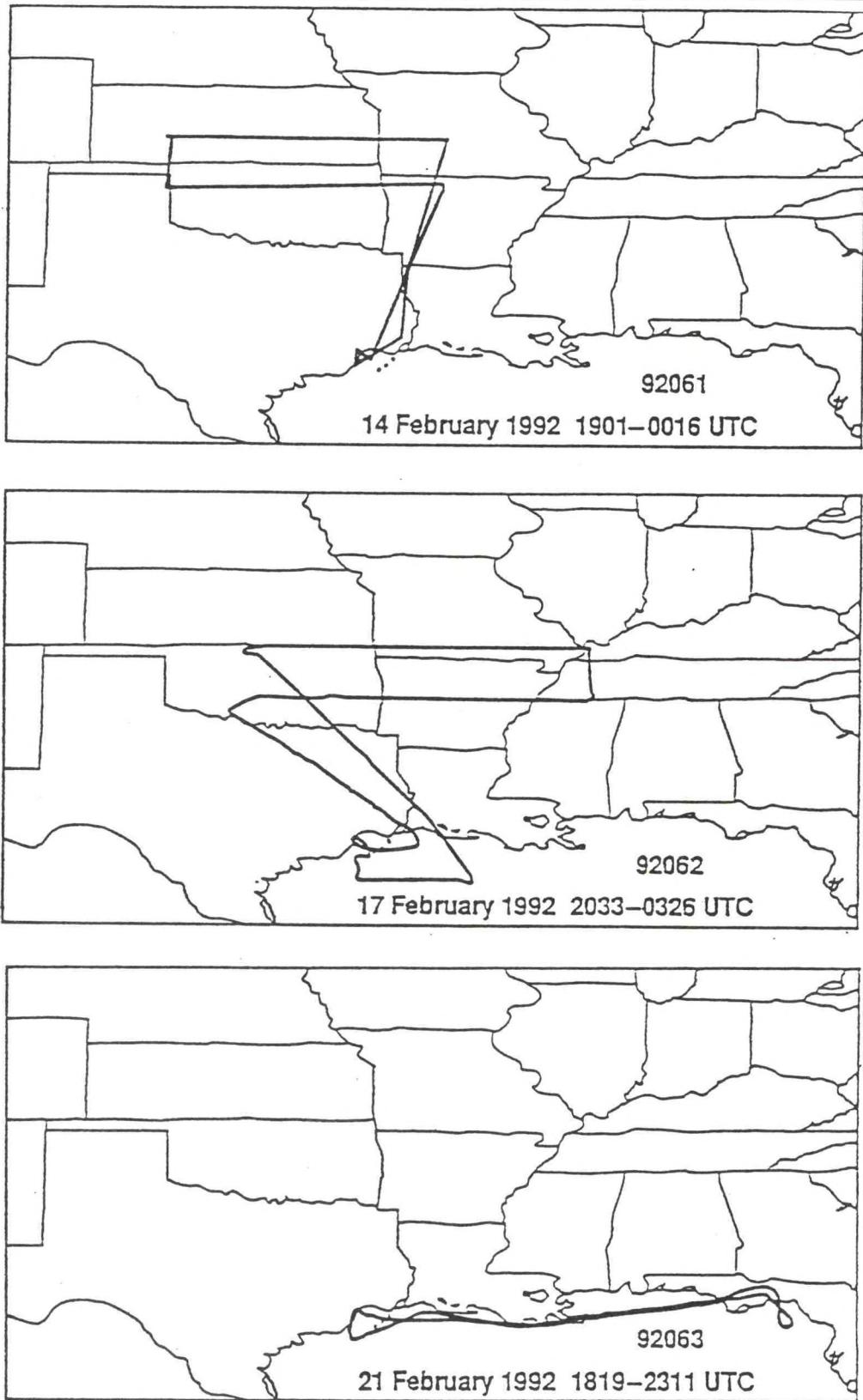
| <u>Flight Date</u> | <u>Number</u> | <u>Region</u>      | <u>Instrument</u> | <u>Objective</u>                  |
|--------------------|---------------|--------------------|-------------------|-----------------------------------|
| 1. 14 Feb          | 92045 92061   | OK, KS, MO, AR, TX | Wildfire          | Ozone variability tropopause fold |
| 2. 17 Feb          | 92048 92062   | OK, MO, AR, TX, TN | Wildfire          | Ozone variability tropopause fold |
| 3. 21 Feb          | 92052 92063   | Gulf coast, FL     | Wildfire          | Support thunderstorm flight       |
| 4. 23 Feb          | 92054 92064   | CO, KS, TX         | Wildfire          | Support precipitation study       |
| 5. 25 Feb          | 92056 92065   | NE, KS, OK, TX     | Wildfire          | Support HIS moisture mission      |
| 6. 1 Mar           | 92061 92066   | NE, KS, OK, TX     | MAMS              | Support HIS boundary layer study  |
| 7. 7 Mar           | 92067 92067   | TX, Gulf coast     | MAMS              | ER-2 test flight                  |
| 8. 8 Mar           | 92068 92068   | TX,                | MAMS              | Flight abort, AC problems         |
| 9. 11 Mar          | 92071 92069   | TX, AR, MO, NE, KS | MAMS              | Gravity waves, with MTS           |
| 10. 13 Mar         | 92073 92070   | TX, LA Gulf coast  | MAMS              | MTS system test                   |
| 11. 14 Mar         | 92074 92071   | TX, OK, NE, KS     | MAMS              | HIS 4-D assimilation study        |

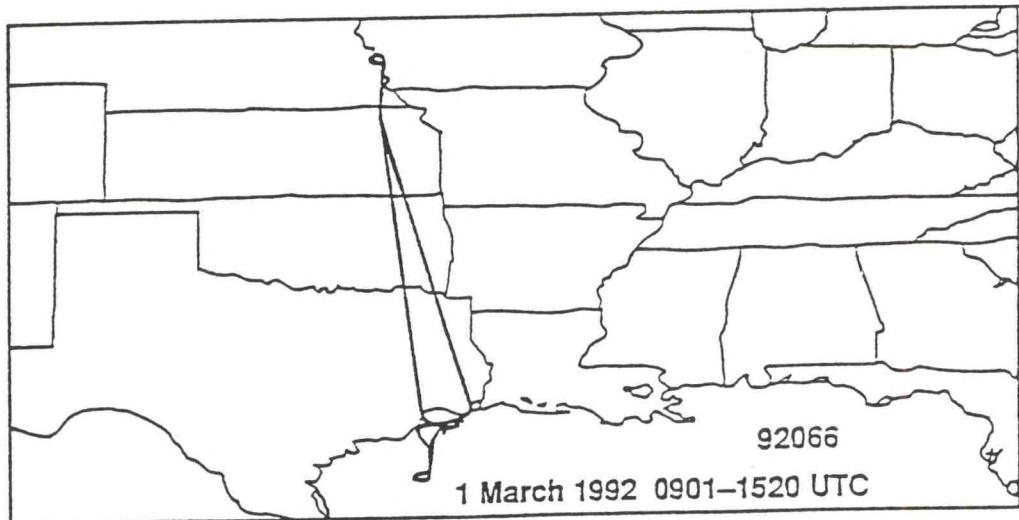
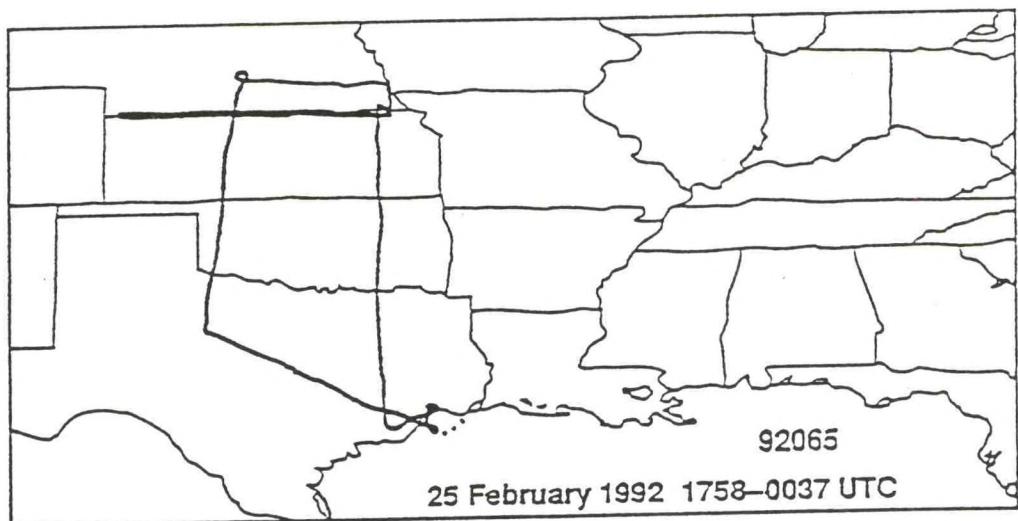
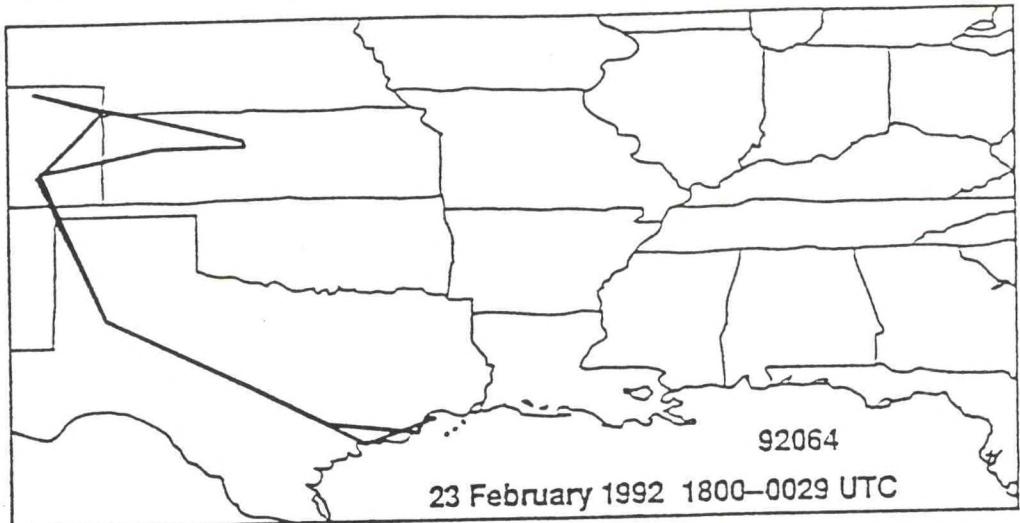
## Analysis Plans

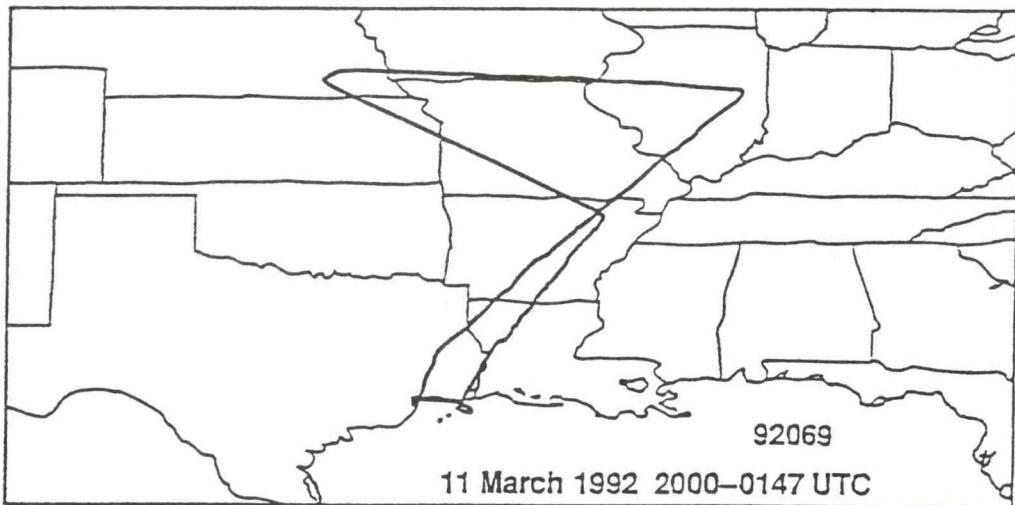
Current analysis plans consist of three days when the Wildfire was flown on the ER-2 aircraft. No analysis plans exist for the M"S data flights. The case study days are listed below.

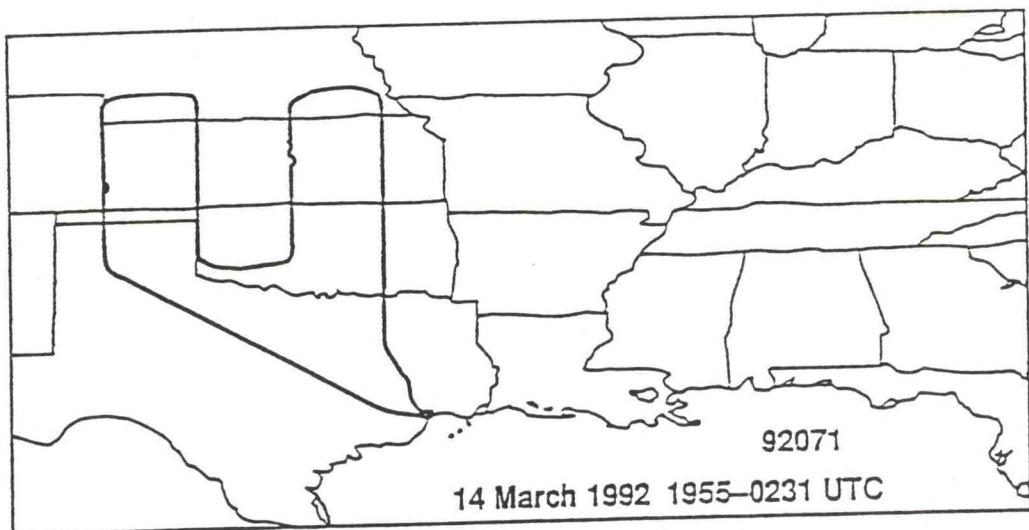
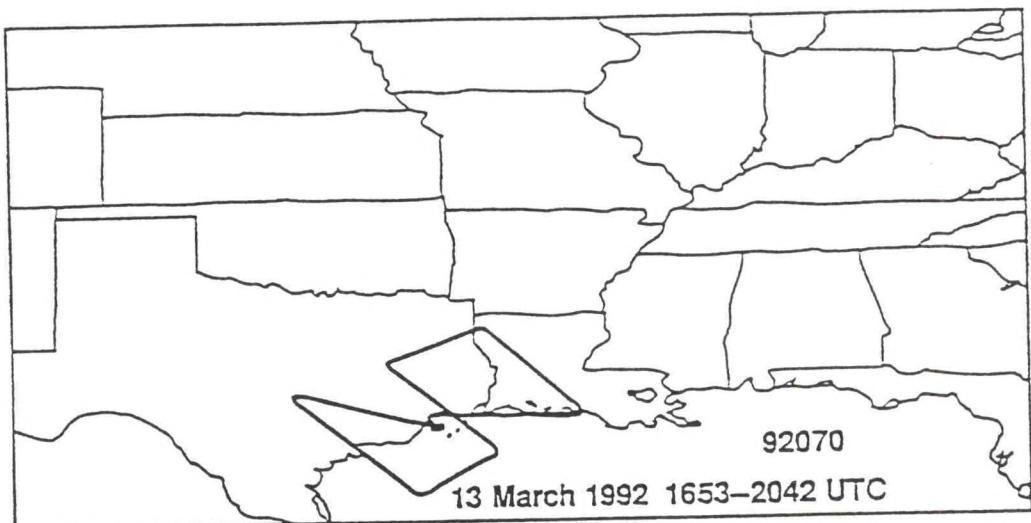
- 14 February 1992: Wildfire case study
- 17 February 1992: Wildfire case study
- 25 February 1992: HIS/Wildfire data comparisons

## Data Availability


Both the MAMS and Wildfire (MAS) instruments have very high data rates which exceed 200 megabytes of data per hour. This data is currently recorded on high density 14 track magnetic tapes during the flight. These 14 track tapes are permanently archived at NASA's Ames Research Center at Moffett Field, California. Limited amounts of MAMS and Wildfire data were processed in the field after each flight using the MSFC Quick View System. The QVS allowed for the rapid display and evaluation of Daedalus scanner data immediately after a flight. This evaluation served as the basis for gain changes from one flight to the next. All MAMS and Wildfire data collected during STORM-FEST can be obtained from Ames in raw form (uncalibrated - level 0 data) on 9 track tape. The focal point for requesting this data is:




Mr. Jeff Myers (415-694-6252)  
High Altitude Missions Branch  
NASA Ames Research Center  
Mail Stop 240-6  
Moffett Field, CA 94035


MSFC has obtained all of the MAMS and Wildfire data for STORM-FEST from Ames. Because of the volume of data and the number of data flights, this data will not be mass distributed or put in an active archive. Data for specific flights will be processed and made available on an individual request basis. Data can be requested in either raw or calibrated form on magnetic tape in either a McIDAS area data format or in a generic flat file format. Complete documentation of these formats will be provided upon request. For special case studies, higher level data may be



available, including navigated and earth located scenes and flight tracks. This scene data may be composed of either radiances or temperature data, and may include derived products such as integrated water and ozone content, upper level humidity, and cloud top temperatures. Scanner data and products produced at MSFC can be requested through:

Dr. Gary J. Jedlovec (205-544-5695)  
Remote Sensing Branch  
NASA Marshall Space Flight Center  
Mail Code ES 43  
Huntsville, AL 35812









**U.S. Weather Research Program**  
**STORM-FEST Operations Summary and Data Inventory**

---

## **Appendix C**

## Appendix C: STORM-FEST VAS Schedule

Although the VAS instrument has been active for 10 years, very little has been done since the initial VAS demonstration to investigate the potential of the instrument for high-resolution soundings, given good signal-to-noise from adequate sampling in the dwell sounding mode of operations. Under normal satellite operations, soundings are routinely taken quasi-operational with geographic coverage over much of the United States. This is accomplished by compromising the sounding spin budget (hence signal-to-noise) in order to achieve the latitudinal coverage in the time available (10 minutes each half-hour). During STORM-FEST, there were two special types of coverage obtained. The first, MESOB, covered the STORM-FEST Boundary layer network (39.75-41.0 deg latitude), and second, MESOA, covered the STORM-FEST mesoscale Inner Domain. Because of operational constraints, the MESOA coverage was divided into two sections: (1) MESOAN (north) from 44 to 37 deg latitude; and (2) MESOAS (south) from 37 to 31 deg latitude.

The following table represents the GOES-7 VAS and RISOP Schedules for STORM-FEST where, each line represents both nominal and RISOP Activities for each daily half hour. The activity is sequential with the processor data load (minutes) in parentheses. The following is a brief description of each activity:

XX-XX: Imagery band range [e.g., 7-12(16) represents bands 7-12 imagery for 16 minutes].

DI: Dwell Image [e.g., DI(8) represents Dwell image for 8 minutes].

DS: Dwell Soundings in two sections: North and South [e.g., DSN(8) represents Dwell Soundings (north) for 8 minutes].

MESOA: Dwell Sounding MESOA coverage was divided into two sections: (1) MESOAN (north) from 44 to 37 deg latitude; and (2) MESOAS (south) from 37 to 31 deg latitude.

**MESOB:** Dwell Sounding MESOB coverage was approximately 39.75-41.0 deg latitude.

Secondary information on the spin budgets and PDLs used in the VAS and RISOP schedule are provided on the following pages. This information includes specific coverage and location, sensor spins, and any pertinent comments.

### Goes-7 and RISOP Schedules for STORM-FEST

| TIME<br>UTC | ACTIVITY<br>NOMINAL        | RISOP                                   |
|-------------|----------------------------|-----------------------------------------|
| 0000        | 7-12(16), 5-12(4)17-12(4)  | 7-10(16), DI(8)                         |
| 0030        | 10-12(14), MESOB(10)       | 7-10(8), 7(4),5-10(4),7-12(4),7(4)      |
| 0100        | 7-10(6), MESOAN(19)        | 7-10(8), 7(4),5-10(4),7-12(4),7(4)      |
| 0130        | 10-12(14), MESOB(10)       | 7-10(8), 7(4),5-10(4),7-12(4),7(4)      |
| 0200        | 7-10(6), MESOAS(19)        | 7-10(8), 7(4),5-10(4),7-12(4),7(4)      |
| 0230        | 10-12(14), MESOB(10)       | 7-10(8), 7(4),5-10(4),7-12(4),7(4)      |
| 0300        | 7-10(16), 5-12(4),7-12(4)  | 7-10(16), DI(8)                         |
| 0330        | 5-12(16), MESOB(8)         | 5-10(8), 9-12(4),9-10(4),1-2(4),6-11(4) |
| 0400        | 7-10(16), DSN(8)           | 7-10(8), 6-11(4),9-10(4),3-4(4),7-12(4) |
| 0430        | 5-12(16), MESOB(8)         | 5-10(8), 6-9(4),9-10(4),3-4(4),7-2(4)   |
| 0500        | 7-10(16), DSS(8)           | 7-10(8), 6-11(4),9-10(4),3-4(4),7-12(4) |
| 0530        | 5-12(16), MESOB(8)         | 5-10(8), 9-12(4),9-10(4),1-2(4),6-11(4) |
| 0600        | 7-10(16), 5-12(4),7-12(4)  | 7-10(16), DI(8)                         |
| 0630        | 7-12(14), MESOB(10)        | 7-10(8), 7(4),15-10(4),117-12(4),7(4)   |
| 0700        | 7-10(6), MESOAN(19)        | 1-10(8), 7(4),15-10(4),7-12(4),7(4)     |
| 0730        | 7-12(14), MESOB(10)        | 7-10(8), 7(4),5-10(4),7-12(4),7(4)      |
| 0800        | 7-10(6), MESOAS(19)        | 7-10(8), 7(4),3-10(4),7-12(4),7(4)      |
| 0830        | 9-12(14), MESOB(10)        | 9-10(8), 7(4),5-10(4),7-12(4),7(4)      |
| 0900        | 7-10(16), 5-12(4),7-12(4)  | 7-10(16), DI(8)                         |
| 0930        | 9-12(16), MESOB(8)         | 5-9(8), 9-12(4),9-10(4),1-2(4),6-11(4)  |
| 1000        | 7-10(16), DSN(8)           | 7-10(8), 6-11(4),9-10(4),3-4(4),7-12(4) |
| 1030        | 5-9(16), MESOB(8)          | 5-9(8), 6-9(4),9-10(4),3-4(4),1-2(4)    |
| 1100        | 7-10(16), DSS(8)           | 7-10(8), 6-11(4),9-10(4),3-4(4),7-12(4) |
| 1130        | 5-12(16), MESOB(8)         | 5-10(8), 9-12(4),9-10(4),1-2(4),6-11(4) |
| 1200        | 7-10(19), 7-12(4)          | 7-10(19)                                |
| 1230        | 10-12(14), MESOB(10)       | 7-10(8), 7(4),5-10(4),7-12(4),7(4)      |
| 1300        | 7-10(6), MESAN(19)         | 7-10(8), 7(4),5-10(4),7-12(4),7(4)      |
| 1330        | 10-12(14), MESOB(10)       | 7-10(8), 7(4),5-10(4),7-12(4),7(4)      |
| 1400        | 7-10(6), MESOAS(19)        | 7-10(8), 7(4),5-10(4),7-12(4),7(4)      |
| 1430        | 10-12(14), MESOB(10)       | 7-10(8), 7(4),5-10(4),7-12(4),7(4)      |
| 1500        | 7-10(16), 5-12(4), 7-12(4) | 7-10(16), DI(8)                         |
| 1530        | 5-12(16), MESOB(8)         | 5-10(8), 9-12(4),9-10(4),1-2(4),6-11(4) |
| 1600        | 7-10(16), DSN(8)           | 7-10(8), 6-11(4),9-10(4),3-4(4),7-12(4) |
| 1630        | 5-12(16), MESOB(8)         | 5-10(8), 6-9(4),9-10(4),3-4(4),1-2(4)   |
| 1700        | 7-10(16), DSS(8)           | 7-10(8), 6-11(4),9-10(4),3-4(4),7-12(4) |
| 1730        | 5-12(16), MESOB(8)         | 5-10(8), 9-12(4),9-10(4),1-2(4),6-11(4) |
| 1800        | 7-10(16), 5-12(4), 7-12(4) | 7-10(16), DI(8)                         |
| 1830        | 7-12(14), MESOB(10)        | 7-10(8), 7(4),5-10(4),7-12(4),7(4)      |

| TIME<br>UTC | ACTIVITY<br>NOMINAL       | RISOP                                   |
|-------------|---------------------------|-----------------------------------------|
| 1900        | 7-10(6), MESOAN(19)       | 7-10(8), 7(4),5-10(4),7-12(4),7(4)      |
| 1930        | 7-12(14), MESOB(10)       | 7-10(8), 7(4),5-10(4),7-12(4),7(4)      |
| 2000        | 7-10(6), MESOAS(19)       | 7-10(8), 7(4),5-10(4),7-12(4),7(4)      |
| 2030        | 9-12(14), MESOB(10)       | 9-10(8), 7(4),5-10(4),7-12(4),7(4)      |
| 2100        | 7-10(16), 5-12(4),7-12(4) | 7-10(16), DI(8)                         |
| 2130        | 9-12(16), MESOB(8)        | 5-9(8), 9-12(4),9-10(4),1-2(4),6-11(4)  |
| 2200        | 7-10(16), DSN(8)          | 7-10(8), 6-11(4),9-10(4),3-4(4),7-12(4) |
| 2230        | 5-9(16), MESOB(8)         | 5-9(8), 6-9(4),9-10(4),3-4(4),1-2(4)    |
| 2300        | 7-10(16), DSS(8)          | 7-10(8), 6-11(4),9-10(4),3-4(4),7-12(4) |
| 2330        | 5-12(16), MESOB (8)       | 5-10(8), 9-12(4),9-10(4),1-2(4),6-11(4) |

MSI      A B C D E F G H

|       |                         |   |
|-------|-------------------------|---|
| 7     | 08-13-07-13-08-13-07-13 | S |
| 5-2   | 08-01-08-01-08-02-08-02 | S |
| 5-4   | 08-03-08-03-08-04-08-04 | S |
| 5-9   | 08-05-08-05-08-09-08-09 | S |
| 5-10  | 08-05-08-05-09-10-08-10 | S |
| 5-12  | 08-05-08-05-06-12-08-12 | S |
| 6-9   | 08-06-08-06-08-09-08-09 | S |
| 6-11  | 08-06-08-06-08-11-08-11 | S |
| 7-10  | 08-07-08-07-08-10-08-10 | S |
| 7-12  | 08-07-08-07-08-12-08-12 | S |
| 9-10  | 06-09-08-09-08-10-08-10 | S |
| 9-12  | 08-09-08-09-08-12-08-12 | S |
| 10-12 | 08-10-08-10-08-12-08-12 | S |

| PDL       | HSZ | CEN | TIM  | COV     | COMMENT                                    |
|-----------|-----|-----|------|---------|--------------------------------------------|
| 7(4)      | 170 | 411 | 3.4  | 5IN-22N | RISOP 5 min loop                           |
| 1-2(4)    | 170 | 411 | 3.4  | 5IN-22N | RISOP MSI sounding                         |
| 3-4(4)    | 170 | 411 | 3.4  | 5IN-22N | RISOP MSI sounding                         |
| 5-9(8)    | 400 | 501 | 8.0  | 90N-EQ  | RISOP H20 winds                            |
| 5-9(16)   | 800 | 901 | 16.0 | full    | water vapor winds loop                     |
| 5-10(4)   | 170 | 411 | 3.4  | 51N-22N | RISOP 5 min loop                           |
| 5-10(8)   | 400 | 501 | 8.0  | 90N-EQ  | RISOP H20 winds                            |
| 5-12(16)  | 800 | 901 | 16.0 | full    |                                            |
| 5-12(4)   | 170 | 411 | 3.4  | 50N-23N | Nominal schedule rapid imaging             |
| 6-9(4)    | 170 | 411 | 3.4  | 90N-15N | RISOP MSI sounding                         |
| 6-11(4)   | 170 | 411 | 3.4  | 5IN-22N | RISOP MSI sounding                         |
| 7(4)      | 170 | 411 | 3.5  | 5IN-22N | RISOP 5 min loop                           |
| 8(4)      | 170 | 411 | 3.5  | 5IN-22N | RISOP 5 min loop                           |
| 10(6)     | 300 | 401 | 6.0  | 90N-13N | short MSI to allow MESOA DS                |
| 7-10(8)   | 400 | 501 | 8.0  | 90N-EQ  |                                            |
| 7-10(14)  | 700 | 801 | 14.0 | 90N-42S |                                            |
| 7-10(16)  | 800 | 901 | 16.0 | full    |                                            |
| 7-10(19)  | 910 | 911 | 18.2 | full    |                                            |
| 7-12(4)   | 170 | 411 | 3.5  | 5IN-22H | RISOP 5 min loop and Non Sch rapid imaging |
| 7-12(14)  | 700 | 801 | 14.0 | 90N-42S |                                            |
| 7-12(16)  | 800 | 901 | 16.0 | full    |                                            |
| 9-10(4)   | 170 | 411 | 3.4  | 5IN-22N | RISOP MSI sounding                         |
| 9-10(8)   | 400 | 501 | 8.0  | 90N-27S | RISOP only                                 |
| 9-12(4)   | 170 | 411 | 3.4  | 51N-22N | RISOP MSI sounding                         |
| 9-12(14)  | 700 | 801 | 14.0 | 90N-42S |                                            |
| 9-12(16)  | 800 | 901 | 16.0 | full    |                                            |
| 10-12(14) | 700 | 801 | 14.0 | 90N-42S |                                            |

| <u>DS</u>  | <u>SPINS</u>                       | <u>IGFOV</u> | <u>S1,S3</u> | <u>HSZ</u> | <u>CEN</u> | <u>COV</u> |
|------------|------------------------------------|--------------|--------------|------------|------------|------------|
|            | 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C | 3456789A     |              |            |            |            |
| N(8)       | 0- 1- 2- 2- 2- 2- 1- 2- 1- 1- 1    | SSSLSLLL     | 4,4          | 77         | 291        | 50N-35N    |
| S(8)       | 0- 1- 2- 2- 2- 2- 1- 2- 1- 1- 1    | SSSLSLLL     | 4,4          | 77         | 441        | 36N-23N    |
| MESOB1(8)  | 15-8- 15-8- 13-8- 15-1- 25-11-11-1 | SSSLSLSS     | 2,2          | 6          | *297       | 41N-39N    |
| MESOB2(8)  | 15-8- 15-8- 13-8- 15-1- 25-11-11-1 | SSSLSLSS     | 2,2          | 6          | *300       | 41N-39N    |
| MESOB3(8)  | 15-6- 15-8- 13-8- 15-1- 25-11-11-1 | SSSLSLSS     | 2,2          | 6          | *303       | 41N-39N    |
| MESOB4(8)  | 15-8- 15-8- 13-8- 15-1- 25-11-11-1 | SSSLSLSS     | 2,2          | 6          | *306       | 41N-39N    |
| MESOB5(8)  | 15-8- 15-8- 13-8- 15-1- 25-11-11-1 | SSSLSLSS     | 2,2          | 6          | *309       | 41N-39N    |
| MESOB6(8)  | 15-8- 15-9- 13-8- 15-1- 25-11-11-1 | SSSLSLSS     | 2,2          | 6          | *312       | 41N-39N    |
| MESOB1(10) | 20-9- 21-10-16-9- 20-1- 31-14-13-1 | SSSLSLSS     | 2,2          | 6          | *297       | 41N-39N    |
| MESOB2(10) | 20-9- 21-10-16-9- 20-1- 31-14-13-1 | SSSLSLSS     | 2,2          | 6          | *300       | 41N-39N    |
| MESOB3(10) | 20-9- 21-10-16-9- 20-1- 31-14-13-1 | SSSLSLSS     | 2,2          | 6          | *303       | 41N-39N    |
| MESOB4(10) | 20-9- 21-10-16-9- 20-1- 31-14-13-1 | SSSLSLSS     | 2,2          | 6          | *306       | 41N-39N    |
| MESOB5(10) | 20-9- 21-10-16-9- 20-1- 31-14-13-1 | SSSLSLSS     | 2,2          | 6          | *309       | 41N-39N    |
| MESOB6(10) | 20-9- 21-10-16-9- 20-1- 31-14-13-1 | SSSLSLSS     | 2,2          | 6          | *312       | 41N-39N    |
| MESOAN(10) | 5- 3- 5- 4- 5- 4- 5- 1- 8- 4- 4- 1 | SSSLSLSS     | 2,2          | 39         | 329        | 45N-38N    |
| MESOAS(19) | 5- 3- 5- 4- 6- 4- 5- 1- 4- 4- 4- 1 | SSSLSLSS     | 2,2          | 39         | 405        | 38N-31N    |
| DI(8)      | 0- 1- 2- 2- 1- 2- 1- 1- 2- 1- 1- 1 | SSSLSLLL     | 4,4          | 85         | 319        | 46N-31N    |

\*Center of meso- $\beta$  coverage must shift as a function of time of day to accommodate apparent earth notion. Motion will specified in late January 1992.



---

**U.S. Weather Research Program**  
**STORM-FEST Operations Summary and Data Inventory**

## **Appendix D**

## Appendix D: Acronym List

|        |                                                                |
|--------|----------------------------------------------------------------|
| 4DDA   | Four Dimensional Data Assimilation                             |
| ACARS  | Aircraft Communication and Reporting System                    |
| AES    | Atmospheric Environment Service (Canada)                       |
| AFB    | Air Force Base (U.S.)                                          |
| AGL    | Above Ground Level                                             |
| AL     | Aeronomy Laboratory (NOAA)                                     |
| AMPR   | Advanced Microwave Precipitation Radiometer                    |
| AOC    | Aircraft Operations Center (NOAA)                              |
| ARS    | Agricultural Research Station (USDA)                           |
| ASCII  | American National Standard Code for Information Interchange    |
| ASOS   | Automated Surface Observation System                           |
| ASTER  | Atmosphere-Surface Turbulent Exchange Research (NCAR)          |
| AVHRR  | Advanced Very High Resolution Radiometer                       |
| AWOS   | Aviation Weather Observation System                            |
| CD-ROM | Compact Disk - Read Only Memory                                |
| CLASS  | Cross Chain LORAN Atmospheric Sounding System                  |
| COD    | Consultant on Duty                                             |
| CODIAC | Cooperative Distributed Interactive Atmospheric Catalog System |
| DMSP   | Defense Meteorological Satellite Program                       |
| DoD    | Department of Defense (U.S.)                                   |
| DS     | Dwell Soundings                                                |

|        |                                                         |
|--------|---------------------------------------------------------|
| EFF    | Experimental Forecasting Facilities (NWS)               |
| ERL    | Environmental Research Laboratory (NOAA)                |
| FAA    | Federal Aviation Administration (U.S.)                  |
| FAO    | Flatlands Atmospheric Observatory                       |
| FGGE   | First GARP Global Experiment                            |
| FNOC   | Fleet Numerical Oceanographic Center (U.S. Navy)        |
| FSL    | Forecast Systems Laboratory (NOAA)                      |
| FSU    | Florida State University                                |
| FTP    | File Transfer Protocol                                  |
| GAC    | Global Area Coverage                                    |
| GARP   | Global Atmospheric Research Program                     |
| GOES   | Geostationary Operational Environmental Satellite       |
| HIRS/2 | High Resolution Infrared Radiation Sounder              |
| HIS    | High-resolution Interferometer Sounder (U of Wisconsin) |
| HPCN   | High Plains Climate Network                             |
| HRPT   | High Resolution Picture Transmission                    |
| ICN    | Illinois Climate Network                                |
| ICRAD  | Interactive Color Radar Display                         |
| IFR    | Instrument Flight Range                                 |
| IOP    | Intensive Operation Period                              |
| L2D2   | Lightweight LORAN Digital Dropsonde                     |
| LAC    | Local Area Coverage                                     |
| LAPS   | Local Analysis and Prediction System                    |
| LFM    | Limited Fine Mesh Model                                 |
| LIP    | Lightning Instrument Package                            |
| LWC    | Liquid Water Content                                    |

|        |                                                           |
|--------|-----------------------------------------------------------|
| MAMS   | Multispectral Atmospheric Mapping Sensor                  |
| MAPS   | Mesoscale Analysis and Prediction System Model            |
| McIDAS | Man-computer Interactive Data Access System               |
| MIR    | Millimeter Imaging Radiometer                             |
| MM4    | NCAR Mesoscale Model (Version 4)                          |
| MMM    | Mesoscale Microscale Meteorology Division (NCAR)          |
| MRF    | Medium Range Forecast Model                               |
| MSFC   | Marshall Space Flight Center (NASA)                       |
| MSI    | Multi-Spectral Imagery                                    |
| MSL    | Mean Sea Level                                            |
| MSU    | Microwave Sounding Unit                                   |
| MTS    | Microwave Temperature Sounder                             |
| <br>   |                                                           |
| NASA   | National Aeronautics and Space Administration (U.S.)      |
| NCAR   | National Center for Atmospheric Research                  |
| NCDC   | National Climatic Data Center                             |
| NESDIS | National Environmental Satellite Data Information Service |
| NGM    | Nested Grid Model                                         |
| NMC    | National Meteorological Center (NWS)                      |
| NOAA   | National Oceanic and Atmospheric Administration           |
| NPGS   | Naval Post Graduate School                                |
| NSSFC  | National Severe Storms Forecast Center (NOAA)             |
| NSSL   | National Severe Storms Laboratory (NOAA)                  |
| NWIS   | National Water Information System (USGS)                  |
| NWS    | National Weather Service                                  |
| <br>   |                                                           |
| OFPS   | Office of Field Project Support (UCAR)                    |
| OSF    | Operational Support Facility (NOAA)                       |

|            |                                                   |
|------------|---------------------------------------------------|
| PAM II     | Portable Automated Mesonet (second generation)    |
| PBL        | Planetary Boundary Layer                          |
| PDL        | Processor Data Load                               |
| PMS        | Particle Measurement System                       |
| PPI        | Plan Position Indicator                           |
| PVA        | Positive Vorticity Advection                      |
| RADAP II   | RAdar DAta Processor (second generation)          |
| RAF        | Research Aviation Facility (NCAR)                 |
| RAFS       | Regional Analysis and Forecast System             |
| RAM        | Random Access Memory                              |
| RASS       | Radio Acoustic Sounding System                    |
| RDP        | Research Data Program (NCAR)                      |
| RHI        | Range Height Indicator                            |
| RISOP      | Rapid Interval Scan Operations Plan               |
| SAO        | Surface Aviation Observation                      |
| SBUV/2     | Solar Backscattered Ultraviolet System            |
| SCD        | Scientific Computing Division (NCAR)              |
| SFDMC      | STORM-FEST Data Management Center                 |
| SSEC       | Space Science Engineering Center (U of Wisconsin) |
| SSM/I      | Special Sensor Microwave Imager                   |
| SSU        | Stratospheric Sounding Unit                       |
| STORM      | STormscale Operational and Research Meteorology   |
| STORM-FEST | STORM Fronts Experiment Systems Test              |
| TDL        | Techniques Development Laboratory (NWS)           |
| TDWR       | Terminal Doppler Weather Radar                    |
| TIROS      | Television and InfraRed Operational Satellite     |
| TOVS       | TIROS Operational Vertical Sounder                |

|       |                                                 |
|-------|-------------------------------------------------|
| UCAR  | University Corporation for Atmospheric Research |
| USAF  | United States Air Force                         |
| USDA  | United States Department of Agriculture         |
| USGS  | United States Geological Survey (U.S.)          |
| USWRP | United States Weather Research Program          |
| UTC   | Universal Time Coordinated                      |
|       |                                                 |
| VAS   | VISSR Atmospheric Sounder                       |
| VCR   | Video Cassette Recorder                         |
| VFR   | Visual Flight Range                             |
| VISSR | Visible and Infrared Spin-Scan Radiometer       |
|       |                                                 |
| WPL   | Wave Propagation Laboratory (NOAA)              |
| WSFO  | Weather Service Forecast Office (NWS)           |
| WSR   | Weather Service Radar                           |



---

**U.S. Weather Research Program**  
**STORM-FEST Operations Summary and Data Inventory**

## **Appendix E**

## Participants and Mailing List

Robert Adler  
Code 612  
NASA, Goddard Space Flight Center  
Greenbelt, MD 20771

Ernest M. Agee  
Dept. of Earth and Atmos. Sciences  
Purdue University  
1397 CIVL Building  
West Lafayette, IN 47907-1397

Ron Alberty  
NOAA, Operational Support Facility  
1200 Westheimer Dr.  
Norman, OK 73069

Gerry Albright  
NCAR/ATD  
P.O. BOX 3000  
Boulder, CO 80307

James Arnold  
Code ES43 Bldg. 4481  
Marshall Space Flight Center/NASA  
Huntsville, AL 35812

Raymond Arritt  
Dept. of Physics  
University of Kansas  
Lawrence, KS 66045-2151

Ed Ash  
R/E/WP6, NOAA/WPL  
325 Broadway  
Boulder, CO 80303

Marco Avellaneda  
Courant Institute of Mathematical Sci  
New York University, 251 Mercer St.  
New York, NY 10012

Steven L. Baughcum  
MS 6H-FC  
Boeing Company  
P.O. Box 3707  
Seattle, WA 98124

Chandrakant Bhumralkar  
NOAA/OAR, SSMC1, RM 4350  
1315 East-West Highway  
Silver Spring, MD 20910

Blaine Blad  
Dept. of Agricultural Meteorology  
University of Nebraska-Lincoln  
243 L.W. Chase Hall  
Lincoln, NE 68583-0728

Howard Bluestein  
School of Meteorology  
University of Oklahoma  
200 Felgar St. Rm. 219  
Norman, OK 73069

William Blumen  
University of Colorado  
Campus Box 391  
Boulder, CO 80309

Jeff Bobka  
NCAR/ATD  
P.O. Box 3000  
Boulder, CO 80307

Lance Bosart  
Dept. of Atmospheric Science, rm 219  
SUNY Albany  
Albany, NY 12222

Bob Bowie  
NCAR/ATD  
P.O. Box 3000  
Boulder, CO 80307

Ed Brandes  
NCAR/RAP  
P.O. BOX 3000  
Boulder, CO 80303

Wayne Brazille  
NOAA/U.S. Weather Research Program  
325 Broadway  
Boulder, CO 80303

Charles Browne  
Dept. of Physics & Atmospheric Sci.  
Drexel University  
32nd and Chestnut St.  
Philadelphia, PA 19104

Donald Burgess  
NOAA/Operational Support Facility  
1200 Westheimer Dr.  
Norman, OK 73069

Cris Burghart  
NCAR/ATD  
P.O. Box 3000  
Boulder, CO 80307

Steve Businger  
North Carolina State University  
Box 8208  
Raleigh, NC 27695

Jean-Pierre Cammas  
Atmospheric Sciences  
SUNY  
1400 Washington Ave., ES 234  
Albany, NY 12222

Richard Carbone  
ATD/NCAR  
P.O. Box 3000  
Boulder, CO 80307

Ned Chamberlin  
NCAR/SSSF  
P.O. BOX 3000  
Boulder, CO 80307

William L. Chameides  
School of Earth & Atmospheric Sciences  
Georgia Institute of Technology  
221 Bobby Dodd Way, Rm 203  
Atlanta, GA 30332-0340

Dave Chen  
Department of Meteorology  
University of Hawaii at Manoa  
2525 Correa Road  
Honolulu, HI 96822

Steve Chiswell  
Department of MEAS  
NCSU  
Box 8208 Jordan Hall  
Raleigh, NC 27695-8208

Al Cooper  
NCAR  
P.O. Box 3000  
Boulder, CO 80307

Richard Clark  
Department of Earth Sciences  
Millersville University  
Lancaster House  
Millersville, PA 17551-0302

Doug Copley  
ASDS Department  
University of Colorado, Boulder  
Campus Box 391  
Boulder, CO 80309

John Clarke  
Atmospheric Sciences Modeling Div.  
U.S.E.P.A.  
3820 Hwy 54  
Research Triangle Park, NC 27709

Alan Covich  
University of Oklahoma  
Dept. of Zoology  
202 Sutton Hall  
Norman, OK 73019

Robert Cohen  
Dept. of Physics & Atmospheric Sci.  
Drexel University  
32nd and Chestnut St.  
Philadelphia, PA 19104

Charlie Crisp  
National Severe Storms Laboratory  
1313 Halley Circle  
Norman, OK 73069

Hal Cole  
NCAR/SSSF  
P.O. BOX 3000  
Boulder, CO 80307

Tim Crum  
Operational Support Facility  
3200 Marshall Ave., Suite 100  
Norman, OK 73069

Gerald Coleman  
USDA/ARS  
P.O. Box 1430  
Durant, OK 74702

John Cunning  
NOAA/U.S. Weather Research Program Off.  
325 Broadway  
Boulder, CO 80303

Stephen Colucci  
College of Agriculture and Life Sciences  
Cornell University  
1113A Bradfield Hall  
Ithaca, NY 14853

Csanady Gabriel  
Oceanography Department  
Old Dominion University  
768 - 52nd St.  
Norfolk, VA 23529

Walter Dabberdt  
ATD  
NCAR  
P.O. Box 3000  
Boulder, CO 80307-3000

Russell R. Dickerson  
Department of Meteorology  
University of Maryland  
2102 Computer and Space Sciences Bldg  
College Park, MD 20742-2425

Grant Darkow  
Dept. of Atmospheric Science  
University of Missouri  
701 Hitt St.  
Columbia, MO 65211

Evelyn Donall  
MMM  
NCAR  
P.O. Box 3000  
Boulder, CO 80307

Grant L. Darkow  
Department of Atmospheric Sciences  
University of Missouri, rm 100  
Gentry Hall  
Columbia, MO 65211

Michael Douglas  
NOAA/ERL/NSSL/MRD, R/E/FS1  
325 Broadway  
Boulder, CO 80303

Lorenzo de la Fuente  
Department of Meteorology  
University of Wisconsin  
1225 West Dayton Street  
Madison, WI 53706

Franco Einaudi  
Laboratory for Atmospheres Code 612  
NASA Goddard Space Flight Center  
Greenbelt, MD 20771

Deum Dean  
Department of Atmospheric Science  
SUNY Albany  
ES224  
Albany, NY 12222

Russ Elsberg  
Department of Meteorology (Code 63 ES)  
Naval Post Graduate School  
MR/HS  
Monterey, CA 93943

Tony Delany  
NCAR/ATD  
P.O. Box 3000  
Boulder, CO 80307

Kerry A. Emanuel  
Ctr for Meteorology and Physical Ocean  
Massachusetts Institute of Technology  
Rm 54-1620  
Cambridge, MA 02139

Jacques Derome  
Dept. of Atmos. & Oceanic Science  
McGill University  
805 Sherbrooke St. West  
Montreal, CANADA PQ, H3A2K6

Gus Emmanuel  
NCAR/NOAA TOGA-COARE OFFICE  
P.O. BOX 3000  
Boulder, CO 80307

Gery Ernest  
NSSFC/NWS  
601 E. 12th St.  
Kansas City, MO 64106

Gary Ernst  
NOAA/NWS  
201 S. Clairborne  
Olathe, KS 66062

Steven K. Esbensen  
Department of Atmospheric Sciences  
Oregon State University  
Strand Agriculture Hall 326  
Corvallis, OR 97331-2209

Wayne Faas  
NOAA/NESDIS/NCDC  
Federal Bldg., Stop 21  
Asheville, NC 28801

Brian Farrell  
Dept. of Earth & Planetary Sciences  
Harvard University  
29 Oxford Street  
Cambridge, MA 02138

Arthur A. Few  
Space Physics and Astronomy  
Rice University  
P.O. Box 1892  
Houston, TX 77251-1892

Brian Fielder  
School of Meteorology  
University of Oklahoma  
100 E. Boyd, Rm 1310  
Norman, OK 73019

Douglas Forsyth  
National Severe Storms Laboratory  
1313 Halley Circle  
Norman, OK 73069

Carl A. Friehe  
Dept. of Mechanical & Aerospace Eng.  
University of California, Irvine  
616 Engineering Building  
Irvine, CA 92717-3975

Bob Gall  
NCAR/MMM  
P.O. Box 3000  
Boulder, CO 80307

John Gamache  
R/E/AO1  
NOAA/ERL/AOML/HRD  
4301 Rickenbacker Causeway  
Miami, FL 33149

Nimal Gamage  
APAS Department  
University of Colorado, Boulder  
Campus Box  
Boulder, CO 80309

Michael Garstang  
Department of Environmental Sciences  
University of Virginia  
Clark Hall  
Charlottesville, VA 22903

John E. Geisler  
Department of Meteorology  
University of Utah  
819 William C. Browning Building  
Salt Lake City, UT 84112

Marvin Glasser  
Kearney St. College  
Kearney, NB 68849

Vince Glover  
NCAR/ATD  
P.O. Box 3000  
Boulder, CO 80307

Robert Grossman  
CIRES  
University of Colorado  
Campus box 391  
Boulder, CO 80309-0449

Joseph Golden  
Room 517  
NOAA/Office of Chief Scientist  
1825 Connecticut Ave., N.W.  
Washington, DC 20235

Richard D. Grotjahn  
Land, Air and Water Resources  
University of California, Davis  
151 Hoagland Hall  
Davis, CA 95616-8627

Steven Goodman  
ES42  
NASA  
Marshall Space Flight Center  
Huntsville, AL 35812

Richard Grubin  
NCAR/RAP  
P.O. Box 3000  
Boulder, CO 80307

Glen Gorden  
University of Wyoming  
Box 3038 University Station  
Laramie, WY 82071

Anthony R. Guillory  
Marshall Space Flight Center  
NASA, Code ES43  
Huntsville, AL 35812

George Grell  
FSL  
NOAA/FSL, R/E/FS  
325 Broadway  
Boulder, CO 80303

Bob Hallowell  
MIT Lincoln Labs  
P.O. Box 73  
Lexington, MA 02173-0073

Vanessa Griffin  
Marshall Space Flight Center  
NASA, Code ES43  
Huntsville, AL 35812

Christopher Hayden  
NOAA/NESDIS/CIMSS  
University of Wisconsin  
1225 W. Dayton St.  
Madison, WI 53706

Jack Gross  
National Weather Service  
6501 E. Apache St., Rm 201  
Tulsa, OK 74115

Paul Hays  
Dept. of Atmospheric, Oceanic & Space Sc  
University of Michigan  
Space Research Building-2455 Hayward  
Ann Arbor, MI 48109-2910

Paul Herzegh  
NCAR/RAF  
P.O. Box 3000  
Boulder, CO 80307

Tom Horst  
NCAR/RAP  
P.O. Box 3000  
Boulder, CO 80307

Gerry Heymsfield  
Code 973  
NASA Goddard Space Flight Ctr.  
Greenbelt, MD 20771

David Houghton  
Dept. of Meteorology  
University of Wisconsin  
1225 W. Dayton St.  
Madison, WI 53706

Peter Hildebrand  
ATD/RSF  
NCAR  
P.O. Box 3000  
Boulder, CO 80307

Michael Hudlow  
Director, Office of Hydrology  
NOAA/NWS  
1325 East-West Highway  
Silver Spring, MD 20910

David Himes  
UCAR  
P.O. Box 3000  
Boulder, CO 80307

Steve Hunter  
NOAA/NSSL  
1313 Halley Circle  
Norman, OK 73069

Paul Hirschberg  
Department of Meteorology (Code 63 ES)  
Naval Post Graduate School  
MR/HS  
Monterey, CA 93943

John Hurd  
442CSG/CE  
Richards-Gebaur AFB, MO 64147-5000

Mark Hjehmfelt  
Department of Meteorology  
South Dakota School of Mines & Technology  
501 E. St. Joseph  
Rapid City, SD 57701

Larry Irving  
University of Wyoming  
Box 3038 University Station  
Laramie, WY 82071

Peter Hobbs  
Dept. of Atmospheric Sciences/AK40  
University of Washington  
Seattle, WA 98195

Gary Jedlovc  
Code ES43  
Marshall Space Flight Center/NASA  
Huntsville, AL 35812

Robbie Hood  
Code ES43  
Marshall Space Flight Center/NASA  
Greenbelt, MD 20771

Bartell Jensen  
Utah State University  
Logan, UT 84322

Donald Johnson  
Dept. of Meteorology  
University of Wisconsin  
1225 W. Dayton St.  
Madison, WI 53506

J.T. Johnson  
NOAA/NSSL  
1313 Halley Circle  
Norman, OK 70369

Richard H. Johnson  
Department of Atmospheric Sciences  
Colorado State University  
Fort Collins, CO 80523

Warren Johnson  
RAF  
NCAR  
P.O. Box 3000  
Boulder, CO 80307

Joan Jordan  
Div. of Atmospheric Sciences  
National Science Foundation  
1800 G St. NW  
Washington, DC 20550

Mike Kaplan  
Dept. of Marine, Earth, & Atmospheric  
North Carolina State University  
13 Meeting Road  
Newport News, VA 23606

Daniel Keyser  
Dept. of Atmospheric Science, ES224  
SUNY Albany  
Albany, NY 12222

Stan Kidder  
Atmospheric Sciences Program  
University of Alabama in Huntsville  
Huntsville, AL 35899

Tom Kitterman  
Meteorology Department B-161  
Florida State University  
Tallahassee, FL 32306-3034

Bob Knuteson  
CIMSS Department of Meteorology  
University of Wisconsin  
1225 West Dayton Street  
Madison, WI 53706

Stephen Koch  
Dept. MEAS  
North Carolina State University  
Box 8208  
Raleigh, NC 27695

Steve Kozack  
AOC  
NOAA  
P.O. Box 6829  
McDill AFB, FL 33608-0829

Carl Kreitzberg  
Dept. of Physics & Atmospheric Sci.  
Drexel University  
32nd and Chestnut St.  
Philadelphia, PA 19104

E. Philip Krider  
Department of Atmospheric Sciences  
University of Arizona  
PAS Building 81, Rm 542  
Tucson, AZ 85721

John E. Kutzbach  
Department of Meteorology  
University of Wisconsin-Madison  
1225 West Dayton St.  
Madison, WI 53706

Neil Laird  
University of Illinois  
105 South Gregory Avenue  
Urbana, IL 61801

Ron Lavoie  
NOAA/NWS, rm 14348  
1325 East West Highway  
Silver Spring, MD 20910

Margaret LeMone  
MMM  
NCAR  
P.O. Box 3000  
Boulder, CO 80302

John D. Locatelli  
Dept. of Atmos. Sciences  
University of Washington, AK 40  
Seattle, WA 98195

Robert Lysak  
School of Physics and Astronomy  
University of Minnesota  
116 Church St. S.E.  
Minneapolis, MN 55455

A.E. MacDonald  
R/E/FS  
NOAA/ERL/FSL  
325 Broadway  
Boulder, CO 80303

Robert Maddox  
Director  
National Severe Storms Laboratory  
1313 Halley Circle  
Norman, OK 73069

Bill Mahoney  
NCAR/RAP  
P.O. Box 3000  
Boulder, CO 80307

Mankin Mak  
Department of Atmospheric Sciences  
University of Ill. at Urbana-Champaign  
105 South Gregory Avenue  
Urbana, IL 61801-3070

Peter Mandics  
NOAA/FSL, R/E/FS2  
325 Broadway  
Boulder, CO 80303

John Marwitz  
University of Wyoming  
Box 3038 University Station  
Laramie, WY 82071

Doug Mathews  
National Severe Storms Forecast Center  
601 E. 12th St.  
Kansas City, MO 64106

John McCarthy  
NCAR/RAP  
P.O. Box 3000  
Boulder, CO 80307

James McFadden  
AOC  
NOAA  
P.O. Box 6829  
McDill AFB, FL 33608-0829

John McGinley  
R/E/FS2  
NOAA/ERL/FSL  
325 Broadway  
Boulder, CO 80303

Wayne McGovern  
NWS W/OSD23  
NOAA/NWS/Techniques Development Lab.  
1325 East-West Highway  
Silver Spring, MD 20910

Gerry McKim  
AOC  
NOAA  
P.O. Box 6829  
McDill AFB, FL 33608-0829

Richard McMahon  
442CSG/OT  
Richards-Gebaur AFB, MO 64147-5000

Ken McMillen  
McMillen Enterprises  
P.O. Box 368/280 YARR RD.  
Port Hadlock, WA 98339

Ronald McPherson  
NMC, Director  
NOAA/NWS  
5200 Auth Rd.  
Camp Springs, MD 20746

Gary McWilliams  
SLCAS-AR-M  
U.S. Army Atmos. Sci. Lab.  
White Sands Missile Rg, NM 88002-5501

Keith Meier  
Department of Atmospheric Science  
SUNY Albany  
ES224  
Albany, NY 12222

Jose Meitin  
R/E/NS1  
NOAA/ERL/NSSL/MRD  
325 Broadway  
Boulder, CO 80303

Harvey Melfi  
Code 917  
NASA/GSFC  
Greenbelt, MD 20771

Daniel Merdes  
CDR  
USNR  
561 Easterly Parkway  
State College, PA 16801

John T. Merrill  
Center for Atmospheric Chemistry Studies  
University of Rhode Island  
South Ferry Road  
Narragansett, RI 02882-1197

Richard W. Miksad  
Department of Aerospace Engineering  
University of Texas at Austin  
Building WRW215  
Austin, TX 78712-1085

Donald B. Miller  
Chief, Satellite Applications Lab.  
NOAA, Code E/RA2  
5200 Auth Road, Rm 601  
Camp Springs, MD 20746

Ron Miller  
NOAA/FSL, R/E/FS2  
325 Broadway  
Boulder, CO 80303

David Murcray  
Department of Physics  
University of Denver  
University Park  
Denver, CO 80208-0100

Mitchell Moncrieff  
MMM  
NCAR  
P.O. Box 3000  
Boulder, CO 80307-3000

Rich Murnan  
NEXRAD Operational Support Facility  
1200 Westheimer Dr.  
Norman, OK 73069

James Moore  
UCAR/OFPS  
P. O. Box 3000  
Boulder, CO 80307-3000

Bill Myers  
NCAR/RAP  
P.O. Box 3000  
Boulder, CO 80307

James T. Moore  
Dept. of Earth & Atmospheric Sciences  
St. Louis University  
3507 Laclede Ave.  
St. Louis, MO 63103

Carmen J. Nappo  
NOAA/ARL/ATDD  
456 South Illinois Ave.  
Oak Ridge, TN 37830

Berrien Moore III  
Inst. for Study of Earth, Ocean & Space  
University of New Hampshire  
Science and Engineering Research Bldg  
Durham, NH 03824-3525

David J. Neelin  
Department of Atmospheric Sciences  
University of California, L.A.  
405 Hilgard Avenue  
Los Angeles, CA 90024-1565

Fred Mosher  
NSSFC  
NWS  
601 E. 12th St.  
Kansas City, MO 64106

William Neff  
NOAA/ERL/WPL, R/E/WP7  
325 Broadway  
Boulder, CO 80303

Cindy Mueller  
NCAR/ATD  
P.O. Box 3000  
Boulder, CO 80307

Stephen P. Nelson  
Atmospheric Sciences Division  
National Science Foundation  
1800 G St. NW  
Washington, DC 20550

Thomas Nelson  
Department of Geography  
Mankato State University  
MSU Box 2  
Manakato, MN 56002-8400

Arlin Nicks  
USDA/ARS  
P.O. Box 1430  
Durant, OK 74702

Wendell Nuss  
Department of Meteorology  
Naval Postgraduate School  
Monterey, CA 93940

Tim O'Bannon  
NEXRAD, Operational Support Facility  
1200 Westheimer Dr.  
Norman, OK 73069

Christopher O'Handley  
Mail Code 912  
NASA/Goddard Space Flight Center  
Greenbelt, MD 20771

Harry Ochs  
Illinois State Water Survey  
2204 Griffith Dr.  
Champaign, IL 61802

Steven A. Orszag  
Prog in Applied & Computational Math  
Princeton University  
Engineering Quadrangle, Rm D309  
Princeton, NJ 08544

Frederick Ostby  
NSSFC  
NWS  
601 E. 12th St.  
Kansas City, MO 64106

Vern Ostdiek  
CIRES-CSES  
University of Colorado  
Campus Box 44a  
Boulder, CO 80309-0449

Thomas Parish  
Dept. of Atmospheric Science  
University of Wyoming  
P.O. Box 3038 University Station  
Laramie, WY 82071

Jack Parrish  
NOAA/AOC  
P.O. Box 6829  
McDill AFB, FL 33608-0829

David Parsons  
NCAR/ATD  
P.O. Box 3000  
Boulder, CO 80307

Patricia Pauley  
Dept. of Meteorology  
University of Wisconsin-Madison  
1225 W. Dayton  
Madison, WI 53719

William R. Peltier  
Department of Physics  
University of Toronto  
60 St. George Str-Burton Tower/Rm 702  
Toronto, CANADA M5S 1A7

Donald J. Perkey  
USRA/NASA/MSFC  
ES41  
Huntsville, AL 35812

Kathy Peter  
USGS/OKC  
202 North West 66th, Bldg. 7  
Oklahoma City, OK 73116

Ralph Petersen  
National Meteorological Center W/NMC22  
NOAA  
5200 Auth Rd.  
Camp Springs, MD 20233

John Pflaum  
NOAA/U.S. Weather Research Program  
325 Broadway  
Boulder, CO 80303

Mike Poellot  
University of N. Dakota  
Box 8216  
University Station  
Grand Forks, ND 58202

Marcia Politovich  
NCAR/RAP  
P.O. Box 3000  
Boulder, CO 80307

Chris Porter  
Department of Meteorology  
Pennsylvania State University  
503 Walker Bldg.  
University Park, PA 16802

Howard Posluns  
Transportation Development Center  
200 Rene Levesque Blvd., West  
West Tower, Suite 601  
Montreal, Quebec CANADA H2Z1X4

James Purdom  
Colorado State University  
NOAA/NESDIS/RAMM Branch  
CIRA, Foothills Campus  
Ft. Collins, CO 80523

Larry Radke  
NCAR/RAF  
P.O. Box 3000  
Boulder, CO 80307

Mohan Ramamurthy  
Dept. of Atmospheric Science  
University of Illinois  
105 S. Gregory Ave.  
Urbana, IL 61801

Sethu Raman  
Dept. of Marine, Earth and Atmos. Science  
North Carolina State University  
Raleigh, NC 27695-8208

Gandikota Rao  
Department of Earth & Atmospheric Sci  
Saint Louis University  
3507 Laclede Avenue, MW 310  
St. Louis, MO 63103

Rich Rasmussen  
NEXRAD, Operational Support Facility  
1200 Westheimer Dr.  
Norman, OK 73069

Roy Rasmussen  
NCAR/RAP  
P.O. Box 3000  
Boulder, CO 80307

Bob Rauber  
Dept. of Atmospheric Science  
University of Illinois  
105 S. Gregory Ave.  
Urbana, IL 61801

John N. Rayner  
Atmospheric Sciences  
Ohio State University  
103 Bricker Hall-190 North Oval Mall  
Columbus, OH 43210-1361

Richard Reed  
Dept. of Atmospheric Science AK-40  
University of Washington  
Seattle, WA 98195

Robert J. Renard  
Department of Meteorology  
Naval Postgraduate School  
Code MR/RD  
Monterey, CA 93943-5000

Claes Rooth  
Rosenstiel School of Marine and Atmos.  
University of Miami  
4600 Rickenbacker Causeway  
Miami, FL 33149

Chester Ropelweski  
NOAA/NWS WW Bldg., Rm 605  
5200 Auth Rd.  
Washington, DC 20233

Phil Rosencranz  
Department of Atmospheric Sciences  
MIT  
Boston, MA 02139

Bruce Ross  
GFDL  
NOAA  
P.O. Box 308  
Princeton, NJ 08540

Larry Ruthi  
NWS  
1200 Westheimer Drive  
Norman, OK 73069

Steve Rutledge  
Department of Atmospheric Science  
CSU  
Ft. Collins, CO 80523

Wayne Sand  
NCAR/ATD  
P.O. Box 3000  
Boulder, CO 80307

Donald Sandstrom  
Mail Stop 87-08  
Boeing Company  
P.O. Box 3707  
Seattle, WA 98124

John Scala  
Code 912  
NASA/Goddard Space Flight Center  
Greenbelt, MD 20771

John Schaake  
W/OHX3  
NWS  
1325 East-West Highway  
Silver Spring, MD 20910

Joseph Schaefer  
NWS - W/CR3, Room 1836  
NOAA/NWS/Central Region SSD  
601 E. 12th St.  
Kansas City, MO 64106

Frank Schiebe  
USDA/ARS  
P.O. Box 1430  
Durant, OK 74702

Frank Schiermeier  
Atmospheric Sciences Modeling Div.  
U.S.E.P.A.  
3820 Highway 54  
Research Triangle Park, NC 27709

Thomas Schlatter  
R/E/FS2  
NOAA/ERL/FSL  
325 Broadway  
Boulder, CO 80303

Jon Scott  
Department of Atmospheric Science  
University at Albany, SUNY  
1400 Washington Ave., E5218  
Albany, NY 12222

Nelson Seaman  
College of Earth and Mineral Sciences  
Pennsylvania State University  
503 Walker Bldg.  
University Park, PA 16802

Mike Seidleberg  
NCAR  
P.O. Box 3000  
Boulder, CO 80307

Melvyn Shapiro  
R/E/WP  
NOAA/ERL/WPL  
325 Broadway  
Boulder, CO 80303

Glenn E. Shaw  
Geophysical Institute  
University of Alaska, Fairbanks  
Fairbanks, AK 99775-0800

Les Showell  
National Severe Storms Laboratory  
NOAA  
1313 Halley Circle  
Norman, OK 73069

Doug Sisterson  
Building 203  
Argonne National Laboratory  
9700 Cress Ave.  
Argonne, IL 60459

Dan Smith  
Southern Region  
NWS  
819 Taylor St. Rm. 10E09  
Ft. Worth, TX 76102

James Smith  
Depart. of Civil Engineering & Operation  
Princeton University  
School of Engineering/Applied Science  
Princeton, NJ 80544

Ronald Smith  
Dept. of Geology and Geophysics  
Yale University  
Box 6666  
New Haven, CT 06511

William Smith  
Dept. of Meteorology  
University of Wisconsin-CIMSS  
1225 W. Dayton St.  
Madison, WI 53705

Richard C.J. Somerville  
Scripps Institution of Oceanography  
University of California, San Diego  
8605 La Jolla Shores Dr., Code 0224  
La Jolla, CA 92093-0224

Rodney Sorenson  
McMillen Enterprises  
P.O. Box 368  
Port Hadlock, WA 98339

Roy W. Spencer  
Code ES43  
Marshall Space Flight Center/NASA  
Huntsville, AL 35812

Ramesh Srivastava  
Hines Laboratory for the Geophysical Sci  
University of Chicago  
5734 Ellis Ave.  
Chicago, IL 60637

Duane Stevens  
Department of Meteorology  
University of Hawaii at Manoa  
2525 Correa Road  
Honolulu, HI 96822

Ron Stewart  
Cloud Physics Research Division  
Atmospheric Environmental Service  
4905 Dufferin St.  
Downsview, Ontario CANADA M3H 5T4

Jeff Stith  
University Station  
Univ. of North Dakota  
P.O. Box 8216  
Grand Forks, ND 58202

Lt. Col James Stobie  
AFOSR/NC  
Building 410, Room B219  
Bolling Air Force Base  
Washington, DC 20032-6448

Robert L. Street  
Libraries and Information Resources  
Stanford University  
Green Library-Arguello Way, Rm 245D  
Stanford, CA 94305-6004

Darrell Strobel  
Department of Earth & Planetary Sci  
John Hopkins University  
Olin Hall  
Baltimore, MD 21218

David W. Stuart  
Department of Meteorology, B-161  
Florida State University  
404 Love Building  
Tallahassee, FL 32306-3034

Wen-Yih Sun  
Dept. of Earth & Atmospheric Sciences  
Purdue University  
West Lafayette, IN 47907

Ed Szkopek  
MMM  
NCAR  
P.O. Box 3000  
Boulder, CO 80307

Eugene Takle  
Dept. of Science and Technology  
Iowa State University  
310 Curtis Hall  
Ames, IA 50011

Alex Tan  
CRIM  
Transportation Development Center  
200 Dorchester Blvd, W, Ste 601 W Tower  
Montreal, Quebec CANADA H2Z1X4

James Telford  
Desert Research Institute ASC  
University of Nevada  
P.O. Box 60220  
Reno, NV 89506

James Toth  
University of Wyoming  
P.O. Box 3038  
Laramie, WY 82071

Greg Tripoli  
Department of Meteorology  
University of Wisconsin  
1225 W. Dayton Street  
Madison, WI 53706

Anastasios Tsonis  
Department of Geosciences  
University of Wisconsin-Milwaukee  
3413 N. Downer Avenue  
Milwaukee, WI 53211

Ben-Jei Tsuang  
Department of Environmental Engineering  
National Chung Hsing University  
Taichung, Taiwan ROC

Donna Tucker  
Department of Atmospheric Sciences  
Creighton University  
Omaha, NE 68178-0110

Karl Turekian  
Center for the Study of Global Change  
Yale University  
P.O. Box 6666  
New Haven, CT 06511

Louis Uccellini  
National Meteorological Center  
World Weather Building, Rm. 410  
5200 Auth Rd.  
Camp Springs, MD 20746

Norbert Untersteiner  
Department of Atmospheric Sciences  
University of Washington  
408 ATG Building AK-40  
Seattle, WA 98195

Chris Velden  
CIMSS Department of Meteorology  
University of Wisconsin  
1225 West Dayton Street  
Madison, WI 53706

Frances de Verteuil  
CRIM  
3744 Rue Jean-Brillant, Bureau 500  
Montreal, Quebec CANADA H3T 1P1

Tom Vonder Haar  
Dept. of Atmospheric Science  
Colorado State University  
Ft. Collins, CO 80523

Charles Wade  
NCAR/MMM/ATD  
P.O. Box 3000  
Boulder, CO 80307

Gary Wade  
NOAA/NESDIS/CIMSS  
University of Wisconsin  
1225 W. Dayton St.  
Madison, WI 53706

Joseph Warburton  
Atmospheric Science Center  
Desert Research Institute  
P.O. Box 60220  
Reno, NV 89506

Charles Warner  
Dept. of Environmental Science  
University of Virginia  
Clark Hall  
Charlottesville, VA 22903

Thomas Warner  
Department of Meteorology  
Pennsylvania State University  
503 Walker Building  
University Park, PA 16802-5013

Chuck Wash  
Code 63WX  
Naval Post Graduate School  
Monterey, CA 93942

Phil Weigant  
National Weather Service  
6501 E. Apache St., Rm 201  
Tulsa, OK 74115

Morris Weisman  
MMM  
NCAR  
P.O. Box 3000  
Boulder, CO 80307

Bob Westfall  
442CSG/SC  
Richards-Gebaur AFB, MO

Ed Westwater  
R/E/WP5  
NOAA/ERL/WPL  
325 Broadway  
Boulder, CO 80303

Robert Wilhelmson  
Dept. of Atmospheric Science  
University of Illinois  
105 S. Gregory Ave.  
Urbana, IL 61801

Gregory Wilson  
Code ES01, Bldg. 4481  
Marshall Space Flight Center  
Huntsville, AL 35812

William P. Winn  
Department of Physics  
New Mexico Univ of Mining and Tech  
Campus Station  
Socorro, NM 87801

Dave Wolff  
Code 910.1  
NASA/Goddard Space Flight Center  
Greenbelt, MD 20771

John Wyngaard  
Dept. of Meteorology  
Penn State University  
508 Walker Bldg.  
University Park, PA 16802

Sandy Yuter  
University of Washington, AK-40  
Seattle, WA 98195

Bob Zamora  
NOAA/WPL, R/E/WP  
325 Broadway  
Boulder, CO 80303

Edward Zipser  
Dept. of Meteorology  
Texas A&M University  
College Station, TX 77843

Dusan Zrnick  
National Severe Storms Laboratory  
1313 Halley Circle  
Norman, OK 73069

Peter Zwack  
Universite of Quebec  
Case Postale 888, Succursale A  
Montreal, Quebec CANADA H3C 3P8